utils.py 14.9 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Utilities for logging and serialization"""

import os
import random
import time
import numpy as np
import torch
23
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
24

Mohammad's avatar
Mohammad committed
25
26
#from megatron.global_vars import get_args
#from megatron.global_vars import get_adlr_autoresume
27

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
28
from megatron import mpu
29
30
31
32
33
34
from megatron.fp16 import FP16_Module
from megatron.fp16 import FP16_Optimizer
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import get_params_for_weight_decay_optimization


Mohammad's avatar
Mohammad committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

def print_rank_0(message):
    """If distributed is initialized print only on rank 0."""
    if torch.distributed.is_initialized():
        if torch.distributed.get_rank() == 0:
            print(message, flush=True)
    else:
        print(message, flush=True)


def reduce_losses(losses):
    """Reduce a tensor of losses across all GPUs."""
    reduced_losses = torch.cat(
        [loss.clone().detach().view(1) for loss in losses])
    torch.distributed.all_reduce(reduced_losses)
    reduced_losses = reduced_losses / torch.distributed.get_world_size()

    return reduced_losses


def check_adlr_autoresume_termination(iteration, model, optimizer,
                                      lr_scheduler, args):
    # Add barrier to ensure consistnecy.
    torch.distributed.barrier()
    if args.AutoResume.termination_requested():
        if args.save:
            save_checkpoint(iteration, model, optimizer, lr_scheduler, args)
        print_rank_0(">>> autoresume termination request found!")
        if torch.distributed.get_rank() == 0:
            args.AutoResume.request_resume()
        print_rank_0(">>> training terminated. Returning")
        exit(0)




Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def get_ltor_masks_and_position_ids(data,
                                    eod_token,
                                    reset_position_ids,
                                    reset_attention_mask,
                                    eod_mask_loss):
    """Build masks and position id for left to right model."""

    # Extract batch size and sequence length.
    batch_size, seq_length = data.size()

    # Attention mask (lower triangular).
    if reset_attention_mask:
        att_mask_batch = batch_size
    else:
        att_mask_batch = 1
    attention_mask = torch.tril(torch.ones(
        (att_mask_batch, seq_length, seq_length), device=data.device)).view(
            att_mask_batch, 1, seq_length, seq_length)

    # Loss mask.
    loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
    if eod_mask_loss:
        loss_mask[data == eod_token] = 0.0

    # Position ids.
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=data.device)
    position_ids = position_ids.unsqueeze(0).expand_as(data)
    # We need to clone as the ids will be modifed based on batch index.
    if reset_position_ids:
        position_ids = position_ids.clone()

    if reset_position_ids or reset_attention_mask:
        # Loop through the batches:
        for b in range(batch_size):

            # Find indecies where EOD token is.
            eod_index = position_ids[b, data[b] == eod_token]
            # Detach indecies from positions if going to modify positions.
            if reset_position_ids:
                eod_index = eod_index.clone()

            # Loop through EOD indecies:
            prev_index = 0
            for j in range(eod_index.size()[0]):
                i = eod_index[j]
                # Mask attention loss.
                if reset_attention_mask:
                    attention_mask[b, 0, (i+1):, :(i+1)] = 0
                # Reset positions.
                if reset_position_ids:
                    position_ids[b, (i+1):] -= (i + 1 - prev_index)
                    prev_index = i + 1

    return attention_mask, loss_mask, position_ids


128

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def print_params_min_max_norm(optimizer, iteration):
    """Print min, max, and norm of all parameters."""
    index = 0
    rank = torch.distributed.get_rank()
    string = 'iteration, rank, index, model-parallel,min, max, norm\n'
    optimizer_ = optimizer
    if isinstance(optimizer, FP16_Optimizer):
        optimizer_ = optimizer.optimizer
    for param_group in optimizer_.param_groups:
        for param in param_group['params']:
            index += 1
            min_ = param.data.min()
            max_ = param.data.max()
            norm = param.data.norm()
            string += '{:7d}, {:4d}, {:4d}, {:2d}, '.format(
                iteration, rank, index, int(param.model_parallel))
            string += '{:.6E}, {:.6E}, {:.6E}\n'.format(min_, max_, norm)
    print(string, flush=True)

Raul Puri's avatar
Raul Puri committed
148
149
150
151
152
153
154
155
156
157
158
159
160

def report_memory(name):
    """Simple GPU memory report."""

    mega_bytes = 1024.0 * 1024.0
    string = name + ' memory (MB)'
    string += ' | allocated: {}'.format(
        torch.cuda.memory_allocated() / mega_bytes)
    string += ' | max allocated: {}'.format(
        torch.cuda.max_memory_allocated() / mega_bytes)
    string += ' | cached: {}'.format(torch.cuda.memory_cached() / mega_bytes)
    string += ' | max cached: {}'.format(
        torch.cuda.max_memory_cached()/ mega_bytes)
161
162
    print_rank_0(string)

163

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
164
165
166
167
168
169
170
171
172
173
174
175
176
def vocab_size_with_padding(num_tokens, args):

    after = num_tokens
    multiple = args.make_vocab_size_divisible_by * \
               mpu.get_model_parallel_world_size()
    while (after % multiple) != 0:
        after += 1
    print_rank_0('> padded vocab (size: {}) with {} dummy '
                 'tokens (new size: {})'.format(
                     num_tokens, after - num_tokens, after))
    return after


177
178
def get_checkpoint_name(checkpoints_path, iteration, release=False,
                        mp_rank=None):
179
180
181
182
183
    if release:
        d = 'release'
    else:
        d = 'iter_{:07d}'.format(iteration)
    return os.path.join(checkpoints_path, d,
184
185
186
                        'mp_rank_{:02d}'.format(
                            mpu.get_model_parallel_rank() if mp_rank is None \
                            else mp_rank),
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
                        'model_optim_rng.pt')


def ensure_directory_exists(filename):
    dirname = os.path.dirname(filename)
    if not os.path.exists(dirname):
        os.makedirs(dirname)


def get_checkpoint_tracker_filename(checkpoints_path):
    return os.path.join(checkpoints_path, 'latest_checkpointed_iteration.txt')


def save_checkpoint(iteration, model, optimizer,
                    lr_scheduler, args):
    """Save a model checkpoint."""
    # Only rank zer0 of the data parallel writes to the disk.
    if isinstance(model, torchDDP):
        model = model.module
    if mpu.get_data_parallel_rank() == 0:
        checkpoint_name = get_checkpoint_name(args.save, iteration)
        print('global rank {} is saving checkpoint at iteration {:7d} to {}'.
              format(torch.distributed.get_rank(), iteration, checkpoint_name))

        sd = {}
        sd['iteration'] = iteration
213
        sd['model'] = model.state_dict_for_save_checkpoint()
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

        # Optimizer stuff.
        if not args.no_save_optim:
            if optimizer is not None:
                sd['optimizer'] = optimizer.state_dict()
            if lr_scheduler is not None:
                sd['lr_scheduler'] = lr_scheduler.state_dict()

        # rng states.
        if not args.no_save_rng:
            sd['random_rng_state'] = random.getstate()
            sd['np_rng_state'] = np.random.get_state()
            sd['torch_rng_state'] = torch.get_rng_state()
            sd['cuda_rng_state'] = torch.cuda.get_rng_state()
            sd['rng_tracker_states'] = mpu.get_cuda_rng_tracker().get_states()

        ensure_directory_exists(checkpoint_name)
        torch.save(sd, checkpoint_name)
        print('  successfully saved {}'.format(checkpoint_name))

    # Wait so everyone is done (necessary)
    torch.distributed.barrier()
    # And update the latest iteration
    if torch.distributed.get_rank() == 0:
        tracker_filename = get_checkpoint_tracker_filename(args.save)
        with open(tracker_filename, 'w') as f:
            f.write(str(iteration))
    # Wait so everyone is done (not necessary)
    torch.distributed.barrier()
Raul Puri's avatar
Raul Puri committed
243
244
245
246


def load_checkpoint(model, optimizer, lr_scheduler, args):
    """Load a model checkpoint."""
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    if isinstance(model, torchDDP):
        model = model.module
    # Read the tracker file and set the iteration.
    tracker_filename = get_checkpoint_tracker_filename(args.load)
    if not os.path.isfile(tracker_filename):
        print_rank_0('WARNING: could not find the metadata file {} '.format(
            tracker_filename))
        print_rank_0('    will not load any checkpoints and will start from '
                     'random')
        return 0
    iteration = 0
    release = False
    with open(tracker_filename, 'r') as f:
        metastring = f.read().strip()
        try:
            iteration = int(metastring)
        except ValueError:
            release = metastring == 'release'
            if not release:
                print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format(
                    tracker_filename))
                exit()
Raul Puri's avatar
Raul Puri committed
269

270
271
272
273
274
275
276
277
278
279
    assert iteration > 0 or release, 'error parsing metadata file {}'.format(
        tracker_filename)

    # Checkpoint.
    checkpoint_name = get_checkpoint_name(args.load, iteration, release)
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    # Load the checkpoint.
280
281
282
283
284
285
286
287
288
289
290
291
292
    try:
        sd = torch.load(checkpoint_name, map_location='cpu')
    except ModuleNotFoundError:
        # For backward compatibility.
        print_rank_0(' > deserializing using the old code structure ...')
        import sys
        sys.modules['fp16.loss_scaler'] = sys.modules[
            'megatron.fp16.loss_scaler']
        sd = torch.load(checkpoint_name, map_location='cpu')
        sys.modules.pop('fp16.loss_scaler', None)
    except:
        print_rank_0('could not load the checkpoint')
        exit()
Raul Puri's avatar
Raul Puri committed
293

294
295
296
    # Iterations.
    if args.finetune or release:
        iteration = 0
Raul Puri's avatar
Raul Puri committed
297
    else:
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
        try:
            iteration = sd['iteration']
        except KeyError:
            try: # Backward compatible with older checkpoints
                iteration = sd['total_iters']
            except KeyError:
                print_rank_0('A metadata file exists but Unable to load iteration '
                             ' from checkpoint {}, exiting'.format(checkpoint_name))
                exit()
    # Model.
    try:
        model.load_state_dict(sd['model'])
    except KeyError:
        print_rank_0('A metadata file exists but unable to load model '
                     'from checkpoint {}, exiting'.format(checkpoint_name))
        exit()

    # Optimizer.
    if not release and not args.finetune and not args.no_load_optim:
        try:
            if optimizer is not None:
                optimizer.load_state_dict(sd['optimizer'])
            if lr_scheduler is not None:
                lr_scheduler.load_state_dict(sd['lr_scheduler'])
        except KeyError:
            print_rank_0('Unable to load optimizer from checkpoint {}, exiting. '
                         'Specify --no-load-optim or --finetune to prevent '
                         'attempting to load the optimizer '
                         'state.'.format(checkpoint_name))
            exit()

    # rng states.
    if not release and not args.finetune and not args.no_load_rng:
        try:
            random.setstate(sd['random_rng_state'])
            np.random.set_state(sd['np_rng_state'])
            torch.set_rng_state(sd['torch_rng_state'])
            torch.cuda.set_rng_state(sd['cuda_rng_state'])
            mpu.get_cuda_rng_tracker().set_states(sd['rng_tracker_states'])
        except KeyError:
338
            print_rank_0('Unable to load optimizer from checkpoint {}, exiting.'
339
340
341
342
343
344
345
346
347
348
349
                         'Specify --no-load-optim or --finetune to prevent '
                         'attempting to load the optimizer '
                         'state.'.format(checkpoint_name))
            exit()

    torch.distributed.barrier()
    if mpu.get_data_parallel_rank() == 0:
        print('  successfully loaded {}'.format(checkpoint_name))

    return iteration

350

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
def load_weights(src, dst, dst2src=False):
    """
    Loads weights from src to dst via in place copy.
    src is a huggingface gpt2model, while dst is one of our models.
    dst2src=True loads parameters from our models into huggingface's.
    ^dst2src is still untested
    """
    conv_layer = 'Conv1D' in  str(type(src))
    for n, p in src.named_parameters():
        if dst2src:
            data = dst._parameters[n].data
            load = p.data
        else:
            data = p.data
            load = dst._parameters[n].data
        if conv_layer and 'weight' in n:
            data = data.t().contiguous()
        load.copy_(data)
#        dst._parameters[n].data.copy_(data)

def load_mlp(our, oai, dst2src=False):
    load_weights(oai.c_fc, our.dense_h_to_4h, dst2src)
    load_weights(oai.c_proj, our.dense_4h_to_h, dst2src)

def load_attention(our, oai, dst2src=False):
    load_weights(oai.c_attn, our.query_key_value, dst2src)
    load_weights(oai.c_proj, our.dense, dst2src)

def load_transformer_layer(our, oai, dst2src=False):
    load_weights(oai.ln_1, our.input_layernorm, dst2src)
    load_weights(oai.ln_2, our.post_attention_layernorm, dst2src)
    load_mlp(our.mlp, oai.mlp, dst2src)
    load_attention(our.attention, oai.attn, dst2src)

def move_weights(our, oai, dst2src=False):
    """
    Loads weights from `oai` to `our` via in place copy.
    `oai` is a huggingface gpt2model, while `our` is one of our models.
    dst2src=True loads parameters from our models into huggingface's.
    ^dst2src=True is still untested
    """
#    while isinstance(our, (torchDDP, model.distributed.DistributedDataParallel, FP16_Module)):
#        our=our.module
    transformer_model = oai.transformer
    load_weights(transformer_model.ln_f, our.transformer.final_layernorm, dst2src)
    load_weights(transformer_model.wte, our.word_embeddings, dst2src)
    load_weights(transformer_model.wpe, our.position_embeddings, dst2src)

    for our_layer, oai_layer in zip(our.transformer.layers, oai.transformer.h):
        load_transformer_layer(our_layer, oai_layer, dst2src)
401
402
403
404
405
406
407
408
409
410
411


def merge_parallel_state_dicts(state_dicts):
    temp_sd = {}
    for sd in state_dicts:
        for k, v in sd.items():
            temp_sd[k].append()
    pass

def merge_parallel_checkpoints(checkpoint_dir, model_parallel_size):
    pass