clip_grads.py 6.98 KB
Newer Older
mohammad's avatar
mohammad committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Gradient clipping."""

import torch
from torch._six import inf

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

from megatron import mpu
mohammad's avatar
mohammad committed
25
26
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
mohammad's avatar
mohammad committed
27
28


Lawrence McAfee's avatar
Lawrence McAfee committed
29
30
31
32
# >>>
from lutil import pax, tp
# <<<

mohammad's avatar
mohammad committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
def clip_grad_norm_fp32(parameters, max_norm, norm_type=2):
    """Clips gradient norm of an iterable of parameters whose gradients
       are in fp32.

    This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
    added functionality to handle model parallel parameters. Note that
    the gradients are modified in place.

    Arguments:
        parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
            single Tensor that will have gradients normalized
        max_norm (float or int): max norm of the gradients
        norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
            infinity norm.

    Returns:
        Total norm of the parameters (viewed as a single vector).
    """

    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]

    # Filter parameters based on:
    #   - grad should not be none
    #   - parameter should not be shared
    #   - should not be a replica due to tensor model parallelism
    grads = []
    grads_for_norm = []
    for param in parameters:
        grad_not_none = param.grad is not None
mohammad's avatar
mohammad committed
63
64
        is_not_shared = param_is_not_shared(param)
        is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
65
66
        if grad_not_none:
            grad = param.grad.detach()
mohammad's avatar
mohammad committed
67
        if grad_not_none:
68
69
            # Make sure the grads are in fp32
            assert param.grad.type() == 'torch.cuda.FloatTensor'
mohammad's avatar
mohammad committed
70
71
72
            grads.append(grad)
        if grad_not_none and is_not_shared and is_not_tp_duplicate:
            grads_for_norm.append(grad)
Lawrence McAfee's avatar
Lawrence McAfee committed
73
74
75
76
77
78
79
80
81
        # >>>
        # else:
        #     pax(1, {
        #         "grad_not_none" : grad_not_none,
        #         "is_not_shared" : is_not_shared,
        #         "is_not_tp_duplicate" : is_not_tp_duplicate,
        #     })
        # <<<

82
83
84
85
86
    # >>>
    # pax(0, {
    #     "[LOC]" : "[** BEFORE CALC NORM **]",
    #     "max_norm" : max_norm,
    #     "parameters" : parameters,
Lawrence McAfee's avatar
Lawrence McAfee committed
87
88
89
    #     "grads" : grads,
    #     "grads_for_norm" : grads_for_norm,
    # })
90
    # <<<
mohammad's avatar
mohammad committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

    # Norm parameters.
    max_norm = float(max_norm)
    norm_type = float(norm_type)
    total_norm = 0.0

    # Calculate norm.
    if norm_type == inf:
        total_norm = max(grad.abs().max() for grad in grads_for_norm)
        total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
        # Take max across all model-parallel GPUs.
        torch.distributed.all_reduce(total_norm_cuda,
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=mpu.get_model_parallel_group())
        total_norm = total_norm_cuda[0].item()

    else:
        if norm_type == 2.0:
            dummy_overflow_buf = torch.cuda.IntTensor([0])
110
111
112
            # Use apex's multi-tensor applier for efficiency reasons.
            # Multi-tensor applier takes a function and a list of list
            # and performs the operation on that list all in one kernel.
Lawrence McAfee's avatar
Lawrence McAfee committed
113
114
115
116
117
118
119
            # >>>
            # pax(1, {
            #     # "fn" : amp_C.multi_tensor_l2norm,
            #     "dummy_overflow_buf" : tp(dummy_overflow_buf),
            #     "grads_for_norm" : grads_for_norm,
            # })
            # <<<
mohammad's avatar
mohammad committed
120
121
122
123
124
125
            grad_norm, _ = multi_tensor_applier(
                amp_C.multi_tensor_l2norm,
                dummy_overflow_buf,
                [grads_for_norm],
                False # no per-parameter norm
            )
mohammad's avatar
mohammad committed
126
127
            # Since we will be summing across data parallel groups,
            # we need the pow(norm-type).
mohammad's avatar
mohammad committed
128
129
130
131
132
133
134
            total_norm = grad_norm ** norm_type

        else:
            for grad in grads_for_norm:
                grad_norm = torch.norm(grad, norm_type)
                total_norm += grad_norm ** norm_type

135
136
137
138
139
140
141
142
143
144
        # >>>
        # pax(0, {
        #     "[LOC]" : "[** CALC NORM **]",
        #     "max_norm" : max_norm,
        #     "norm_type" : norm_type,
        #     "grad_norm" : tp(grad_norm),
        #     "total_norm" : tp(total_norm),
        # })
        # <<<

mohammad's avatar
mohammad committed
145
        # Sum across all model-parallel GPUs.
146
147
148
149
150
        # >>>
        # torch.distributed.all_reduce(total_norm,
        #                              op=torch.distributed.ReduceOp.SUM,
        #                              group=mpu.get_model_parallel_group())
        # +++
mohammad's avatar
mohammad committed
151
        torch.distributed.all_reduce(total_norm,
152
153
                                     op=torch.distributed.ReduceOp.SUM)
        # <<<
mohammad's avatar
mohammad committed
154
155
        total_norm = total_norm.item() ** (1.0 / norm_type)

156
157
158
159
160
161
162
163
164
165
        # >>>
        # pax(1, {
        #     "[LOC]" : "[** CALC NORM **]",
        #     "max_norm" : max_norm,
        #     "norm_type" : norm_type,
        #     "grad_norm" : tp(grad_norm),
        #     "total_norm" : tp(total_norm),
        # })
        # <<<

mohammad's avatar
mohammad committed
166
167
168
169
170
171
172
173
174
175
    # Scale.
    clip_coeff = max_norm / (total_norm + 1.0e-6)
    if clip_coeff < 1.0:
        dummy_overflow_buf = torch.cuda.IntTensor([0])
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             dummy_overflow_buf,
                             [grads, grads],
                             clip_coeff)

    return total_norm
Rewon Child's avatar
Rewon Child committed
176
177
178
179
180
181
182
183
184
185
186


def count_zeros_fp32(parameters):

    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]

    # Filter parameters based on:
    #   - grad should not be none
    #   - parameter should not be shared
    #   - should not be a replica due to tensor model parallelism
Rewon Child's avatar
Rewon Child committed
187
    total_num_zeros = 0.0
Rewon Child's avatar
Rewon Child committed
188
189
190
191
192
193
    for param in parameters:
        grad_not_none = param.grad is not None
        is_not_shared = param_is_not_shared(param)
        is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
        if grad_not_none and is_not_shared and is_not_tp_duplicate:
            grad = param.grad.detach()
Rewon Child's avatar
Rewon Child committed
194
195
            num_zeros = grad.numel() - torch.count_nonzero(grad)
            total_num_zeros = num_zeros + total_num_zeros
Rewon Child's avatar
Rewon Child committed
196
197
198
199
200
201
202
203

    # Sum across all model-parallel GPUs.
    torch.distributed.all_reduce(total_num_zeros,
                                 op=torch.distributed.ReduceOp.SUM,
                                 group=mpu.get_model_parallel_group())
    total_num_zeros = total_num_zeros.item()

    return total_num_zeros