generation.py 19.4 KB
Newer Older
mshoeybi's avatar
mshoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Generation utilities."""

import torch
import torch.nn.functional as F

mshoeybi's avatar
working  
mshoeybi committed
21
from megatron import get_args, get_tokenizer, mpu
mshoeybi's avatar
mshoeybi committed
22
23
24
from megatron.utils import get_ltor_masks_and_position_ids
from .communication import (
    copy_from_last_to_first_pipeline_stage,
mshoeybi's avatar
working  
mshoeybi committed
25
26
    broadcast_from_last_pipeline_stage,
    broadcast_from_last_to_first_pipeline_stage)
mshoeybi's avatar
mshoeybi committed
27
from .forward_step import ForwardStep
mshoeybi's avatar
mshoeybi committed
28
from .sampling import sample
Peng Xu's avatar
Peng Xu committed
29
from .beam_utils import BeamHypotheses
mshoeybi's avatar
mshoeybi committed
30

31
32
MAX_TOKENS_TO_OOM = 12000  # (rprenger) Perfect value depends on hardware and network

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
def score_and_return_on_first_stage(model, tokens, lengths):
    """Function for just scoring.
    Arguments:
        model: no interleaving is supported.
        tokens: prompt tokens extended to be of size [b, max_prompt_length]
        lengths: original prompt length, size: [b]
    Note: Outside of model, other parameters only need to be available on
          rank 0.
    Outputs: 
        output_log_probs: log probability of the selected tokens. size: [b, s]
    """

    args = get_args()

    batch_size = tokens.size(0)
    max_prompt_length = lengths.max().item()
    assert max_prompt_length == tokens.size(1)
50
51
52
53
54
55
    
    if max_prompt_length > args.max_position_embeddings:
        raise ValueError("Length of prompt + tokens_to_generate longer than allowed")
    
    if max_prompt_length * batch_size >= MAX_TOKENS_TO_OOM:
        raise ValueError("Too many tokens.  " + str(max_prompt_length*batch_size)+ " is greater than "+str(MAX_TOKENS_TO_OOM))
56
57

    # forward step.
58
    forward_step = ForwardStep(model, batch_size, max_prompt_length)
59
60
61
62
63
64
65

    # ===================
    # Pre-allocate memory
    # ===================

    # Log probability of the sequence (prompt + generated tokens).
    output_log_probs = None
66
    output_log_probs_size = (batch_size, max_prompt_length - 1)
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    
    if mpu.is_pipeline_last_stage():
        output_log_probs = torch.empty(output_log_probs_size,
                                       dtype=torch.float32,
                                       device=torch.cuda.current_device())
    
    # =============
    # Run infernece
    # =============
    with torch.no_grad():
        attention_mask, position_ids = _build_attention_mask_and_position_ids(tokens)
        
        # logits will be meanigful only in the last pipeline stage.
        logits = forward_step(tokens, position_ids, attention_mask)

        if mpu.is_pipeline_last_stage():
            # Always the last stage should have an output.
            assert logits is not None
            log_probs = F.log_softmax(logits, dim=2)
            
            # Pick the tokens that we need to get the log
            # probabilities for. Note that next input token is
            # the token which we selected in the current logits,
            # so shift by 1.
            indices = torch.unsqueeze(tokens[:, 1:], 2)
            output_log_probs = torch.gather(log_probs, 2, indices).squeeze(2)
    
    # ======================================
    # Broadcast to the first pipeline stage.
    # ======================================
    output_log_probs = broadcast_from_last_to_first_pipeline_stage(
        output_log_probs_size, torch.float32, output_log_probs)
    
    return tokens, lengths, output_log_probs
mshoeybi's avatar
mshoeybi committed
101

mshoeybi's avatar
working  
mshoeybi committed
102
103
104
def generate_tokens_probs_and_return_on_first_stage(
        model, tokens, lengths,
        return_output_log_probs=False,
105
        top_k=0, top_p=0.0, top_p_decay=0.0, top_p_bound=0.0,
mshoeybi's avatar
mshoeybi committed
106
        temperature=1.0,
107
108
109
110
        use_eod_token_for_early_termination=True,
        stop_on_double_eol=False,
        stop_on_eol=False
        ):
mshoeybi's avatar
working  
mshoeybi committed
111
112
    """Main token generation function.
    Arguments:
mshoeybi's avatar
mshoeybi committed
113
        model: no interleaving is supported.
mshoeybi's avatar
working  
mshoeybi committed
114
115
116
117
        tokens: prompt tokens extended to be of size [b, max-sequence-length]
        lengths: original prompt length, size: [b]
        return_output_log_probs: flag to calculate the log probability of
            the generated tokens. Note that the log probability is the one
mshoeybi's avatar
mshoeybi committed
118
119
120
121
122
123
            from the original logit.
        top_k, top_p: top-k and top-p sampling parameters.
            Note that top-k = 1 is gready. Also, these paramters are
            exclusive meaning that:
                if top-k > 0 then we expect top-p=0.
                if top-p > 0 then we check for top-k=0.
mshoeybi's avatar
working  
mshoeybi committed
124
        temperature: sampling temperature.
mshoeybi's avatar
mshoeybi committed
125
126
        use_eod_token_for_early_termination: if True, do early termination if
            all the sequences have reached this token.
mshoeybi's avatar
working  
mshoeybi committed
127
128
129
130
131
132
133
134
135
    Note: Outside of model, other parameters only need to be available on
          rank 0.
    Outputs: Note that is size is adjusted to a lower value than
             max-sequence-length if generation is terminated early.
        tokens: prompt and generated tokens. size: [b, :]
        generated_sequence_lengths: total length (including prompt) of
            the generated sequence. size: [b]
        output_log_probs: log probability of the selected tokens. size: [b, s]
    """
mshoeybi's avatar
mshoeybi committed
136
137
138
139
140
141
142

    args = get_args()
    tokenizer = get_tokenizer()

    batch_size = tokens.size(0)
    min_prompt_length = lengths.min().item()
    max_sequence_length = tokens.size(1)
143
144
145

    if max_sequence_length > args.max_position_embeddings:
        raise ValueError("Length of prompt + tokens_to_generate longer than allowed")
146
    
147
148
    if max_sequence_length * batch_size >= MAX_TOKENS_TO_OOM:
        raise ValueError("Too many tokens.  " + str(max_sequence_length*batch_size)+ " is greater than "+str(MAX_TOKENS_TO_OOM))
mshoeybi's avatar
mshoeybi committed
149

mshoeybi's avatar
mshoeybi committed
150
    # forward step.
mshoeybi's avatar
mshoeybi committed
151
    forward_step = ForwardStep(model, batch_size, max_sequence_length)
mshoeybi's avatar
mshoeybi committed
152

mshoeybi's avatar
mshoeybi committed
153
154
155
156
157
158
159
160
161
162
163
    # Added termination_id to support the case that we want to terminate the
    # generation once that id is generated.
    if hasattr(args, 'eos_id'):
        termination_id = args.eos_id
    else:
        termination_id = tokenizer.eod

    # ===================
    # Pre-allocate memory
    # ===================

mshoeybi's avatar
working  
mshoeybi committed
164
165
166
    # Log probability of the sequence (prompt + generated tokens).
    output_log_probs = None
    output_log_probs_size = (batch_size, max_sequence_length - 1)
mshoeybi's avatar
mshoeybi committed
167
    # Lengths of generated seuquence including including prompts.
mshoeybi's avatar
working  
mshoeybi committed
168
169
170
171
172
173
174
    generated_sequence_lengths = None
    if mpu.is_pipeline_last_stage():
        if return_output_log_probs:
            output_log_probs = torch.empty(output_log_probs_size,
                                           dtype=torch.float32,
                                           device=torch.cuda.current_device())
        generated_sequence_lengths = torch.ones(
175
176
177
                batch_size, dtype=torch.int64,
                device=torch.cuda.current_device()) * max_sequence_length
    
mshoeybi's avatar
mshoeybi committed
178
179
180
181
    # Whether we have reached a termination id.
    is_generation_done = torch.zeros(batch_size, dtype=torch.uint8,
                                     device=torch.cuda.current_device())

mshoeybi's avatar
working  
mshoeybi committed
182
183
184
185
    # =============
    # Run infernece
    # =============

mshoeybi's avatar
mshoeybi committed
186
    with torch.no_grad():
mshoeybi's avatar
mshoeybi committed
187
188
        attention_mask, position_ids = _build_attention_mask_and_position_ids(
            tokens)
mshoeybi's avatar
mshoeybi committed
189
190
191
192
193
194
195
196
197
198
        prev_context_length = 0
        for context_length in range(min_prompt_length, max_sequence_length):

            # Pick the slice that we need to pass through the network.
            tokens2use = tokens[:, prev_context_length:context_length]
            positions2use = position_ids[:, prev_context_length:context_length]
            attention_mask2use = attention_mask[
                ..., prev_context_length:context_length, :context_length]

            # logits will be meanigful only in the last pipeline stage.
mshoeybi's avatar
mshoeybi committed
199
            logits = forward_step(tokens2use, positions2use, attention_mask2use)
mshoeybi's avatar
mshoeybi committed
200
201
202
203
204
205
206

            if mpu.is_pipeline_last_stage():
                # Always the last stage should have an output.
                assert logits is not None

                # Sample.
                last_token_logits = logits[:, -1, :]
mshoeybi's avatar
mshoeybi committed
207
208
209
210
211
                new_sample = sample(last_token_logits,
                                    top_k=top_k,
                                    top_p=top_p,
                                    temperature=temperature,
                                    vocab_size=tokenizer.vocab_size)
212
213
214
215
                if top_p > 0.0 and top_p_decay > 0.0:
                    top_p = top_p * top_p_decay
                    if top_p_bound > 0.0:
                        top_p = max(top_p, top_p_bound)
216

mshoeybi's avatar
mshoeybi committed
217
218
219
                # If a prompt length is smaller or equal th current context
                # length, it means we have started generating tokens
                started = lengths <= context_length
mshoeybi's avatar
mshoeybi committed
220
                # Update the tokens.
mshoeybi's avatar
mshoeybi committed
221
222
223
                tokens[started, context_length] = new_sample[started]

                # Calculate the log probabilities.
224
                if return_output_log_probs:
mshoeybi's avatar
working  
mshoeybi committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
                    log_probs = F.log_softmax(logits, dim=2)
                    if return_output_log_probs:
                        # Pick the tokens that we need to get the log
                        # probabilities for. Note that next input token is
                        # the token which we selected in the current logits,
                        # so shift by 1.
                        indices = torch.unsqueeze(
                            tokens[
                                :,
                                (prev_context_length + 1):(context_length + 1)],
                            2)
                        output_log_probs[:,
                                         prev_context_length:context_length] = \
                            torch.gather(log_probs, 2, indices).squeeze(2)
mshoeybi's avatar
mshoeybi committed
239
240
241
242
243
244
245
246
247
248
249
250

            # Update the tokens on the first stage so the next input to
            # the network is correct.
            copy_from_last_to_first_pipeline_stage(batch_size, torch.int64,
                                                   tokens[:, context_length])

            # Update the context length for the next token generation.
            prev_context_length = context_length

            # Check if all the sequences have hit the termination_id.
            done = None
            if mpu.is_pipeline_last_stage():
rprenger's avatar
rprenger committed
251
252
                # TODO(rprenger) These stopping methods are tokenizer dependent
                # instead tokenization should be in the inference loop so stop sequences can be used
253
254
255
256
257
258
259
260
261
262
263
264
                if stop_on_double_eol:
                    hit_double_eol = (new_sample == 628).byte() & started.byte()
                    hit_two_eols = (new_sample == 198).byte() & (tokens[:, context_length-1] == 198).byte() & started.byte()
                    done_token = hit_double_eol | hit_two_eols
                elif stop_on_eol:
                    hit_double_eol = (new_sample == 628).byte() & started.byte()
                    hit_eol = (new_sample == 198).byte() & started.byte()
                    done_token = hit_double_eol | hit_eol
                else: 
                    done_token = (new_sample == termination_id).byte() & \
                        started.byte()
                
mshoeybi's avatar
mshoeybi committed
265
266
267
268
269
270
271
                just_finished = (done_token & ~is_generation_done).bool()
                generated_sequence_lengths[just_finished.view(-1)] = \
                    context_length + 1
                is_generation_done = is_generation_done | done_token
                done = torch.all(is_generation_done)
            done = broadcast_from_last_pipeline_stage(1, torch.uint8,
                                                      tensor=done)
mshoeybi's avatar
mshoeybi committed
272
273
            if use_eod_token_for_early_termination and done:
                break
Peng Xu's avatar
Peng Xu committed
274
            
mshoeybi's avatar
working  
mshoeybi committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    # ===================================================
    # Update the length of based on max generated length.
    # ===================================================

    tokens = tokens[:, :(context_length + 1)]
    if mpu.is_pipeline_last_stage():
        if return_output_log_probs:
            output_log_probs = output_log_probs[:, :context_length]

    # ======================================
    # Broadcast to the first pipeline stage.
    # ======================================

    generated_sequence_lengths = broadcast_from_last_to_first_pipeline_stage(
        batch_size, torch.int64, generated_sequence_lengths)
    if return_output_log_probs:
        output_log_probs_size = (batch_size, context_length)
        output_log_probs = broadcast_from_last_to_first_pipeline_stage(
            output_log_probs_size, torch.float32, output_log_probs)
294
295

    return tokens, generated_sequence_lengths, output_log_probs
mshoeybi's avatar
working  
mshoeybi committed
296

297
def beam_search_and_return_on_first_stage(model, tokens, lengths, beam_size, stop_token, num_return_gen, length_penalty):
rprenger's avatar
rprenger committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
    args = get_args()
    tokenizer = get_tokenizer()

    batch_size = tokens.size(0)
    assert(batch_size == 1)
    prompt_length = lengths.item()
    final_sequence_length = tokens.size(1)
    final_sequence_length = min(final_sequence_length, args.max_position_embeddings)
    
    # If the context is too big, this happens
    if prompt_length >= final_sequence_length:
        raise ValueError("context length + tokens_to_generate too large")

    # forward step.
    forward_step = ForwardStep(model, beam_size, final_sequence_length)

314
    beam_hyp = BeamHypotheses(beam_size, length_penalty)
315
316
    best_batches = None
    done = torch.zeros(1, dtype=torch.uint8, device=torch.cuda.current_device())
317
318
319
    scores = torch.zeros(beam_size,
                         dtype=torch.float32,
                         device=torch.cuda.current_device()).unsqueeze(1)
320
    scores_size_tensor, tokens_size_tensor = None, None
rprenger's avatar
rprenger committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    # =============
    # Run infernece
    # =============
    with torch.no_grad():
        tokens = tokens.repeat(beam_size, 1)
        attention_mask, position_ids = _build_attention_mask_and_position_ids(tokens)
        prev_context_length = 0
        for context_length in range(prompt_length, final_sequence_length):

            # Pick the slice that we need to pass through the network.
            tokens2use = tokens[:, prev_context_length:context_length]
            positions2use = position_ids[:, prev_context_length:context_length]
            attention_mask2use = attention_mask[
                ..., prev_context_length:context_length, :context_length]

            # logits will be meanigful only in the last pipeline stage.
            logits = forward_step(tokens2use, positions2use, attention_mask2use)

            if mpu.is_pipeline_last_stage():
340
                vocab_size = logits.size(2)
rprenger's avatar
rprenger committed
341
342
343
344
345
346
347
348
                log_probs = F.log_softmax(logits, dim=2)
                new_scores = log_probs[:, -1, :] + scores

                if context_length == prompt_length:  # if this is the first one
                    sorted_scores, indices = torch.sort(new_scores[0,:], descending=True)
                else:
                    sorted_scores, indices = torch.sort(new_scores.view(-1), descending=True)

Peng Xu's avatar
Peng Xu committed
349
350
351
352
353
354
355
356
357
358
359
360
361
                best_beam_ids = torch.div(indices[: 2 * beam_size], vocab_size).trunc().long()
                best_words = indices[:2 * beam_size] % vocab_size
                best_scores = sorted_scores[: 2 * beam_size]

                next_beams = []
                for beam_token_rank, (token_id, beam_score, beam_id) in enumerate(
                    zip(best_words, best_scores, best_beam_ids)
                ):
                    if token_id.item() == stop_token:
                        # if beam_token does not belong to top num_beams tokens, it should not be added
                        is_beam_token_worse_than_top_num_beams = beam_token_rank >= beam_size
                        if is_beam_token_worse_than_top_num_beams:
                            continue
362
                        beam_hyp.add(
Peng Xu's avatar
Peng Xu committed
363
364
365
366
367
368
369
370
371
372
373
                            tokens[beam_id].clone(),
                            beam_score,
                            context_length + 1 - prompt_length
                        )
                    else:
                        # add next predicted token since it is not eos_token
                        next_beams.append((token_id, beam_score, beam_id))

                    if len(next_beams) == beam_size:
                        break

374
                if beam_hyp.is_done(best_scores.max().item(), context_length + 1 - prompt_length):
375
376
                    done = torch.ones(1, dtype=torch.uint8, device=torch.cuda.current_device())
            
Peng Xu's avatar
Peng Xu committed
377
                best_batches = tokens.new([item[2] for item in next_beams])
rprenger's avatar
rprenger committed
378
                tokens = tokens[best_batches,:]
Peng Xu's avatar
Peng Xu committed
379
380
                tokens[:, context_length] = tokens.new([item[0] for item in next_beams])
                scores = scores.new([item[1] for item in next_beams]).unsqueeze(1)
381
382
383
384
385
          
            # torch.distributed.barrier()
            done = broadcast_from_last_pipeline_stage(1, torch.uint8, done)
            if done:
                break
Peng Xu's avatar
Peng Xu committed
386

rprenger's avatar
rprenger committed
387
388
            # Update the tokens on the first stage so the next input to
            # the network is correct.
389
390
391
392
393
394
            copy_from_last_to_first_pipeline_stage(tokens.size(), torch.int64,
                                                   tokens)

            # set inference key values to make it consistent with best beam index
            best_batches = broadcast_from_last_pipeline_stage(beam_size, torch.int64, best_batches)
            forward_step.inference_params.swap_key_value_dict(best_batches)
rprenger's avatar
rprenger committed
395
396
397

            # Update the context length for the next token generation.
            prev_context_length = context_length
398
399
400
401
402

        if mpu.is_pipeline_last_stage():
            # if cannot find stop token, add open beams to hyps
            if not done:
                for beam_id in range(beam_size):
Peng Xu's avatar
Peng Xu committed
403
                    beam_hyp.add(tokens[beam_id].clone(), scores[beam_id].squeeze(), context_length + 1 - prompt_length)
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

            # rank based on scores
            sorted_hyps = sorted(beam_hyp.beams, key=lambda x: x[0], reverse=True)
            num_return_gen = min(num_return_gen, len(sorted_hyps))
            scores = [sorted_hyps[i][0] for i in range(num_return_gen)]
            tokens = [sorted_hyps[i][1] for i in range(num_return_gen)]
            scores = torch.stack(scores, dim=0)
            tokens = torch.stack(tokens, dim=0)
            scores_size_tensor = torch.tensor(scores.shape, dtype=torch.int64, device=torch.cuda.current_device())
            tokens_size_tensor = torch.tensor(tokens.shape, dtype=torch.int64, device=torch.cuda.current_device())

        scores_size_tensor = broadcast_from_last_pipeline_stage(1, torch.int64, scores_size_tensor)
        tokens_size_tensor = broadcast_from_last_pipeline_stage(2, torch.int64, tokens_size_tensor)

        scores = broadcast_from_last_to_first_pipeline_stage(tuple(scores_size_tensor), torch.float32, scores)
        tokens = broadcast_from_last_to_first_pipeline_stage(tuple(tokens_size_tensor), torch.int64, tokens)
Peng Xu's avatar
Peng Xu committed
420

rprenger's avatar
rprenger committed
421
    return tokens, scores
mshoeybi's avatar
mshoeybi committed
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436


def _build_attention_mask_and_position_ids(tokens):
    """Build the attention mask and postition ids for the input tokens."""

    # Since we are not interested in loss-mask and reset attention/position
    # is also False, eod_token is not used so it is safe to set it to None.
    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
        data=tokens,
        eod_token=None,
        reset_position_ids=False,
        reset_attention_mask=False,
        eod_mask_loss=False)

    return attention_mask, position_ids