ict_qualitative_test.py 5.03 KB
Newer Older
Neel Kant's avatar
Neel Kant committed
1
2
3
from collections import defaultdict
import pickle

Neel Kant's avatar
Neel Kant committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import numpy as np
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

from megatron import get_args
from megatron import mpu
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
from megatron.data.bert_dataset import get_indexed_dataset_
from megatron.data.ict_dataset import InverseClozeDataset
from megatron.data.samplers import DistributedBatchSampler
from megatron.initialize import initialize_megatron
from megatron.training import get_model
from pretrain_bert_ict import get_batch, model_provider


def main():
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
    args = get_args()
    model = load_checkpoint()
    model.eval()
    dataset = get_dataset()
    data_iter = iter(get_dataloader(dataset))

Neel Kant's avatar
Neel Kant committed
28
29
30
    hash_data = defaultdict(list)
    hash_matrix = np.random.rand(128, 1024)

Neel Kant's avatar
Neel Kant committed
31
32
    all_input_tokens = []
    all_input_logits = []
Neel Kant's avatar
Neel Kant committed
33
34
    all_block_tokens = []
    all_block_logits = []
Neel Kant's avatar
Neel Kant committed
35

Neel Kant's avatar
Neel Kant committed
36
37
38
39
40
41
42
    while True:
        try:
            input_tokens, input_types, input_pad_mask, \
            block_tokens, block_token_types, block_pad_mask, block_indices = get_batch(data_iter)
        except StopIteration:
            break
        input_logits, block_logits, _ = model.module.module.forward(
Neel Kant's avatar
Neel Kant committed
43
            input_tokens, input_types, input_pad_mask, block_tokens, block_pad_mask, block_token_types, return_logits=True)
Neel Kant's avatar
Neel Kant committed
44

Neel Kant's avatar
Neel Kant committed
45
46
47
48
49
50
        block_hash_pos = torch.matmul(block_logits, hash_matrix)
        block_hash_full = torch.concat((block_hash_pos, -block_hash_pos), axis=1)
        block_hashes = torch.argmax(block_hash_full, axis=1)
        for hash, idx in zip(block_hashes, block_indices):
            hash_data[int(hash)].append(int(idx))

Neel Kant's avatar
Neel Kant committed
51
52
        all_input_tokens.append(input_tokens.detach().cpu().numpy())
        all_input_logits.append(input_logits.detach().cpu().numpy())
Neel Kant's avatar
Neel Kant committed
53
        all_block_tokens.append(block_tokens.detach().cpu().numpy())
Neel Kant's avatar
Neel Kant committed
54
        all_block_logits.append(block_logits.detach().cpu().numpy())
Neel Kant's avatar
Neel Kant committed
55

Neel Kant's avatar
Neel Kant committed
56
57
58
59
    all_input_tokens = np.array(all_input_tokens).reshape(-1, args.seq_length)
    all_input_logits = np.array(all_input_logits).reshape(-1, 128)
    all_block_tokens = np.array(all_block_tokens).reshape(-1, args.seq_length)
    all_block_logits = np.array(all_block_logits).reshape(-1, 128)
Neel Kant's avatar
Neel Kant committed
60
61
    np.save('input_tokens.npy', all_input_tokens)
    np.save('input_logits.npy', all_input_logits)
Neel Kant's avatar
Neel Kant committed
62
    np.save('block_tokens.npy', all_block_tokens)
Neel Kant's avatar
Neel Kant committed
63
64
65
66
67
68
69
70
    np.save('block_logits.npy', all_block_logits)

    for hash, block_indices in hash_data.items():
        hash_data[hash] = np.array(block_indices)

    hash_data['matrix'] = hash_matrix
    with open('hash_data.pkl', 'wb') as hash_file:
        pickle.dump(hash_data, hash_file)
Neel Kant's avatar
Neel Kant committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100


def load_checkpoint():
    args = get_args()
    model = get_model(model_provider)

    if isinstance(model, torchDDP):
        model = model.module
    tracker_filename = get_checkpoint_tracker_filename(args.load)
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    assert iteration > 0
    checkpoint_name = get_checkpoint_name(args.load, iteration, False)
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
    model.load_state_dict(state_dict['model'])
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

    return model


def get_dataset():
    args = get_args()
Neel Kant's avatar
Neel Kant committed
101
102
    block_dataset = get_indexed_dataset_(args.data_path, 'mmap', True)
    titles_dataset = get_indexed_dataset_(args.data_path + '-titles', 'mmap', True)
Neel Kant's avatar
Neel Kant committed
103
104
105

    kwargs = dict(
        name='full',
Neel Kant's avatar
Neel Kant committed
106
107
        context_dataset=block_dataset,
        titles_dataset=titles_dataset,
Neel Kant's avatar
Neel Kant committed
108
        data_prefix=args.data_path,
Neel Kant's avatar
Neel Kant committed
109
110
        num_epochs=1,
        max_num_samples=None,
Neel Kant's avatar
Neel Kant committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        max_seq_length=288,  # doesn't matter
        short_seq_prob=0.0001,  # doesn't matter
        seed=1
    )
    dataset = InverseClozeDataset(**kwargs)
    return dataset


def get_dataloader(dataset):
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    global_batch_size = args.batch_size * world_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=True,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


if __name__ == "__main__":
    main()