ict_qualitative_test.py 4.32 KB
Newer Older
Neel Kant's avatar
Neel Kant committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import numpy as np
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

from megatron import get_args
from megatron import mpu
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
from megatron.data.bert_dataset import get_indexed_dataset_
from megatron.data.ict_dataset import InverseClozeDataset
from megatron.data.samplers import DistributedBatchSampler
from megatron.initialize import initialize_megatron
from megatron.training import get_model
from pretrain_bert_ict import get_batch, model_provider


def main():
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
    args = get_args()
    model = load_checkpoint()
    model.eval()
    dataset = get_dataset()
    data_iter = iter(get_dataloader(dataset))

    all_input_tokens = []
    all_input_logits = []
    all_doc_tokens = []
    all_doc_logits = []

    for i in range(100):
        input_tokens, input_types, input_pad_mask, doc_tokens, doc_token_types, doc_pad_mask = get_batch(data_iter)
        input_logits, doc_logits, _ = model.module.module.forward(
            input_tokens, input_types, input_pad_mask, doc_tokens, doc_pad_mask, doc_token_types, return_logits=True)

        all_input_tokens.append(input_tokens.detach().cpu().numpy())
        all_input_logits.append(input_logits.detach().cpu().numpy())
        all_doc_tokens.append(doc_tokens.detach().cpu().numpy())
        all_doc_logits.append(doc_logits.detach().cpu().numpy())

    all_inputs_tokens = np.array(all_input_tokens).reshape(-1, args.seq_length)
    all_inputs_logits = np.array(all_input_logits).reshape(-1, 128)
    all_doc_tokens = np.array(all_doc_tokens).reshape(-1, args.seq_length)
    all_doc_logits = np.array(all_doc_logits).reshape(-1, 128)
    np.save('input_tokens.npy', all_input_tokens)
    np.save('input_logits.npy', all_input_logits)
    np.save('doc_tokens.npy', all_doc_tokens)
    np.save('doc_logits.npy', all_doc_logits)


def load_checkpoint():
    args = get_args()
    model = get_model(model_provider)

    if isinstance(model, torchDDP):
        model = model.module
    tracker_filename = get_checkpoint_tracker_filename(args.load)
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    assert iteration > 0
    checkpoint_name = get_checkpoint_name(args.load, iteration, False)
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
    model.load_state_dict(state_dict['model'])
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

    return model


def get_dataset():
    args = get_args()
    indexed_dataset = get_indexed_dataset_(args.data_path, 'mmap', True)

    doc_idx_ptr = indexed_dataset.get_doc_idx()
    total_num_documents = indexed_dataset.doc_idx.shape[0] - 1
    indexed_dataset.set_doc_idx(doc_idx_ptr[0:total_num_documents])
    kwargs = dict(
        name='full',
        indexed_dataset=indexed_dataset,
        data_prefix=args.data_path,
        num_epochs=None,
        max_num_samples=total_num_documents,
        max_seq_length=288,  # doesn't matter
        short_seq_prob=0.0001,  # doesn't matter
        seed=1
    )
    dataset = InverseClozeDataset(**kwargs)
    return dataset


def get_dataloader(dataset):
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    global_batch_size = args.batch_size * world_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=True,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


if __name__ == "__main__":
    main()