bert_model.py 15.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BERT model."""

18
19
import pickle

Neel Kant's avatar
Neel Kant committed
20
import numpy as np
21
22
import torch

Mohammad's avatar
Mohammad committed
23
from megatron import get_args
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from megatron.module import MegatronModule

from .language_model import parallel_lm_logits
from .language_model import get_language_model
from .transformer import LayerNorm
from .utils import gelu
from .utils import get_linear_layer
from .utils import init_method_normal
from .utils import scaled_init_method_normal


def bert_attention_mask_func(attention_scores, attention_mask):
    attention_scores = attention_scores + attention_mask
    return attention_scores


def bert_extended_attention_mask(attention_mask, dtype):
    # We create a 3D attention mask from a 2D tensor mask.
    # [b, 1, s]
    attention_mask_b1s = attention_mask.unsqueeze(1)
    # [b, s, 1]
    attention_mask_bs1 = attention_mask.unsqueeze(2)
    # [b, s, s]
    attention_mask_bss = attention_mask_b1s * attention_mask_bs1
    # [b, 1, s, s]
    extended_attention_mask = attention_mask_bss.unsqueeze(1)
    # Since attention_mask is 1.0 for positions we want to attend and 0.0
    # for masked positions, this operation will create a tensor which is
    # 0.0 for positions we want to attend and -10000.0 for masked positions.
    # Since we are adding it to the raw scores before the softmax, this is
    # effectively the same as removing these entirely.
    # fp16 compatibility
    extended_attention_mask = extended_attention_mask.to(dtype=dtype)
    extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

    return extended_attention_mask


def bert_position_ids(token_ids):
    # Create position ids
    seq_length = token_ids.size(1)
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=token_ids.device)
    position_ids = position_ids.unsqueeze(0).expand_as(token_ids)

    return position_ids



class BertLMHead(MegatronModule):
    """Masked LM head for Bert

    Arguments:
        mpu_vocab_size: model parallel size of vocabulary.
        hidden_size: hidden size
        init_method: init method for weight initialization
        layernorm_epsilon: tolerance for layer norm divisions
81
        parallel_output: whether output logits being distributed or not.
82
83
84
85
86
87
88
89
    """
    def __init__(self, mpu_vocab_size, hidden_size, init_method,
                 layernorm_epsilon, parallel_output):

        super(BertLMHead, self).__init__()

        self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size))
        self.bias.model_parallel = True
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
90
91
        self.bias.partition_dim = 0
        self.bias.stride = 1
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        self.parallel_output = parallel_output

        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)
        self.layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)


    def forward(self, hidden_states, word_embeddings_weight):
        hidden_states = self.dense(hidden_states)
        hidden_states = gelu(hidden_states)
        hidden_states = self.layernorm(hidden_states)
        output = parallel_lm_logits(hidden_states,
                                    word_embeddings_weight,
                                    self.parallel_output,
                                    bias=self.bias)
        return output



class BertModel(MegatronModule):
    """Bert Language model."""

Mohammad's avatar
Mohammad committed
113
    def __init__(self, num_tokentypes=2, add_binary_head=True,
Neel Kant's avatar
Neel Kant committed
114
                 ict_head_size=None, parallel_output=True):
115
        super(BertModel, self).__init__()
Mohammad's avatar
Mohammad committed
116
        args = get_args()
117
118

        self.add_binary_head = add_binary_head
119
120
121
122
        self.ict_head_size = ict_head_size
        self.add_ict_head = ict_head_size is not None
        assert not (self.add_binary_head and self.add_ict_head)

123
        self.parallel_output = parallel_output
Mohammad's avatar
Mohammad committed
124
        init_method = init_method_normal(args.init_method_std)
125
        add_pooler = self.add_binary_head or self.add_ict_head
Mohammad's avatar
Mohammad committed
126
127
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
128
        self.language_model, self._language_model_key = get_language_model(
Mohammad's avatar
Mohammad committed
129
            attention_mask_func=bert_attention_mask_func,
130
            num_tokentypes=num_tokentypes,
131
            add_pooler=add_pooler,
132
            init_method=init_method,
Mohammad's avatar
Mohammad committed
133
            scaled_init_method=scaled_init_method)
134

Neel Kant's avatar
Neel Kant committed
135
136
137
        if not self.add_ict_head:
            self.lm_head = BertLMHead(
                self.language_model.embedding.word_embeddings.weight.size(0),
Neel Kant's avatar
Neel Kant committed
138
                args.hidden_size, init_method, args.layernorm_epsilon, parallel_output)
Neel Kant's avatar
Neel Kant committed
139
            self._lm_head_key = 'lm_head'
140
        if self.add_binary_head:
Mohammad's avatar
Mohammad committed
141
142
            self.binary_head = get_linear_layer(args.hidden_size, 2,
                                                init_method)
143
            self._binary_head_key = 'binary_head'
144
        elif self.add_ict_head:
Neel Kant's avatar
Neel Kant committed
145
            self.ict_head = get_linear_layer(args.hidden_size, ict_head_size, init_method)
146
            self._ict_head_key = 'ict_head'
147

148
    def forward(self, input_ids, attention_mask, tokentype_ids=None):
149
150
151
152
153

        extended_attention_mask = bert_extended_attention_mask(
            attention_mask, next(self.language_model.parameters()).dtype)
        position_ids = bert_position_ids(input_ids)

154
        if self.add_binary_head or self.add_ict_head:
155
156
157
158
159
160
161
162
163
164
165
166
167
            lm_output, pooled_output = self.language_model(
                input_ids,
                position_ids,
                extended_attention_mask,
                tokentype_ids=tokentype_ids)
        else:
            lm_output = self.language_model(
                input_ids,
                position_ids,
                extended_attention_mask,
                tokentype_ids=tokentype_ids)

        # Output.
Neel Kant's avatar
Neel Kant committed
168
169
170
171
        if self.add_ict_head:
            ict_logits = self.ict_head(pooled_output)
            return ict_logits, None

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        lm_logits = self.lm_head(
            lm_output, self.language_model.embedding.word_embeddings.weight)
        if self.add_binary_head:
            binary_logits = self.binary_head(pooled_output)
            return lm_logits, binary_logits

        return lm_logits, None


    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
190
191
192
193
        if not self.add_ict_head:
            state_dict_[self._lm_head_key] \
                = self.lm_head.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)
194
195
196
        if self.add_binary_head:
            state_dict_[self._binary_head_key] \
                = self.binary_head.state_dict(destination, prefix, keep_vars)
197
198
199
        elif self.add_ict_head:
            state_dict_[self._ict_head_key] \
                = self.ict_head.state_dict(destination, prefix, keep_vars)
200
201
202
203
204
205
206
207
        return state_dict_


    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)
208
209
210
        if not self.add_ict_head:
            self.lm_head.load_state_dict(
                state_dict[self._lm_head_key], strict=strict)
211
        if self.add_binary_head:
Neel Kant's avatar
Neel Kant committed
212
213
            self.binary_head.load_state_dict(
                state_dict[self._binary_head_key], strict=strict)
214
        elif self.add_ict_head:
Neel Kant's avatar
Neel Kant committed
215
216
            self.ict_head.load_state_dict(
                state_dict[self._ict_head_key], strict=strict)
217

218

Neel Kant's avatar
Neel Kant committed
219
class REALMBertModel(MegatronModule):
220
    def __init__(self, ict_model, block_hash_data_path):
Neel Kant's avatar
Neel Kant committed
221
222
223
224
        # consider adding dataset as an argument to constructor
        # self.dataset = dataset
        # or add a callback

Neel Kant's avatar
Neel Kant committed
225
226
        super(REALMBertModel, self).__init__()
        bert_args = dict(
Neel Kant's avatar
Neel Kant committed
227
            num_tokentypes=1,
Neel Kant's avatar
Neel Kant committed
228
229
230
231
232
233
234
            add_binary_head=False,
            parallel_output=True
        )
        self.lm_model = BertModel(**bert_args)
        self._lm_key = 'realm_lm'

        self.ict_model = ict_model
235
236
237
238
239
240
241
242
        with open(block_hash_data_path, 'rb') as data_file:
            data = pickle.load(data_file)
            # {block_idx: block_embed} - the main index
            self.block_data = data['block_data']
            # {hash_num: [start, end, doc, block]} - the hash table
            self.hash_data = data['hash_data']
            # [embed_size x num_buckets / 2] - the projection matrix used for hashing
            self.hash_matrix = self.hash_data['matrix']
Neel Kant's avatar
Neel Kant committed
243
244
245
246
247

    def forward(self, tokens, attention_mask, token_types):
        # [batch_size x embed_size]
        query_logits = self.ict_model.embed_query(tokens, attention_mask, token_types)

248
249
        # [batch_size x num_buckets / 2]
        query_hash_pos = torch.matmul(query_logits, self.hash_matrix)
Neel Kant's avatar
Neel Kant committed
250
251
252
253
254
255
256
257
258
259
        query_hash_full = torch.cat((query_hash_pos, -query_hash_pos), axis=1)

        # [batch_size]
        query_hashes = torch.argmax(query_hash_full, axis=1)

        batch_block_embeds = []
        for hash in query_hashes:
            # TODO: this should be made into a single np.array in preprocessing
            bucket_blocks = self.hash_data[hash]
            block_indices = bucket_blocks[:, 3]
260
            # [bucket_pop x embed_size]
Neel Kant's avatar
Neel Kant committed
261
            block_embeds = [self.block_data[idx] for idx in block_indices]
262
            # will become [batch_size x bucket_pop x embed_size]
Neel Kant's avatar
Neel Kant committed
263
264
265
            # will require padding to do tensor multiplication
            batch_block_embeds.append(block_embeds)

266
        # [batch_size x max bucket_pop x embed_size]
Neel Kant's avatar
Neel Kant committed
267
        batch_block_embeds = np.array(batch_block_embeds)
268
269
270
271
        # [batch_size x 1 x max bucket_pop]
        retrieval_scores = query_logits.matmul(torch.transpose(batch_block_embeds, 1, 2))
        # [batch_size x max bucket_pop]
        retrieval_scores = retrieval_scores.squeeze()
Neel Kant's avatar
Neel Kant committed
272
        # top 5 block indices for each query
273
        top5_vals, top5_indices = torch.topk(retrieval_scores, k=5)
Neel Kant's avatar
Neel Kant committed
274

Neel Kant's avatar
Neel Kant committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        # TODO
        # go to dataset, get the blocks
        # re-embed the blocks


class REALMRetriever(MegatronModule):
    """Retriever which uses a pretrained ICTBertModel and a hashed_index"""
    def __init__(self, ict_model, ict_dataset, hashed_index, top_k=5):
        super(REALMRetriever, self).__init__()
        self.ict_model = ict_model
        self.ict_dataset = ict_dataset
        self.hashed_index = hashed_index

    def retrieve_evidence_blocks_text(self, query_text):
        """Get the top k evidence blocks for query_text in text form"""
        print("-" * 100)
        print("Query: ", query_text)
        padless_max_len = self.ict_dataset.max_seq_length - 2
        query_tokens = self.ict_dataset.encode_text(query_text)[:padless_max_len]

        query_tokens, query_pad_mask = self.ict_dataset.concat_and_pad_tokens(query_tokens)
        query_tokens = torch.cuda.IntTensor(np.array(query_tokens).reshape(1, -1))
        query_pad_mask = torch.cuda.IntTensor(np.array(query_pad_mask).reshape(1, -1))

        query_embed = self.ict_model.embed_query(query_tokens, query_pad_mask)
        query_hash = self.hashed_index.hash_embeds(query_embed)
        assert query_hash.size == 1

        block_bucket = self.hashed_index.get_block_bucket(query_hash[0])
        block_embeds = [self.hashed_index.get_block_embed[idx] for idx in block_bucket[:, 3]]
        block_embed_tensor = torch.cuda.HalfTensor(np.array(block_embeds))

        retrieval_scores = query_embed.matmul(torch.transpose(block_embed_tensor, 0, 1))
        top5_vals, top5_indices = torch.topk(retrieval_scores, k=5, sorted=True)
        top5_start_end_doc = [block_bucket[idx][:3] for idx in top5_indices]

        top5_blocks = [(self.ict_dataset.get_block(*indices)) for indices in top5_start_end_doc]
        for i, (block, _) in enumerate(top5_blocks):
            block_text = self.ict_dataset.decode_tokens(block)
            print('    > Block {}: {}'.format(i, block_text))
Neel Kant's avatar
Neel Kant committed
315
316


317
class ICTBertModel(MegatronModule):
Neel Kant's avatar
Neel Kant committed
318
    """Bert-based module for Inverse Cloze task."""
319
320
    def __init__(self,
                 ict_head_size,
321
322
323
324
                 num_tokentypes=1,
                 parallel_output=True,
                 only_query_model=False,
                 only_block_model=False):
325
326
        super(ICTBertModel, self).__init__()
        bert_args = dict(
Neel Kant's avatar
Neel Kant committed
327
            num_tokentypes=num_tokentypes,
328
329
            add_binary_head=False,
            ict_head_size=ict_head_size,
Neel Kant's avatar
Neel Kant committed
330
331
            parallel_output=parallel_output
        )
Neel Kant's avatar
Neel Kant committed
332
        assert not (only_block_model and only_query_model)
333
334
        self.use_block_model = not only_query_model
        self.use_query_model = not only_block_model
335

336
337
338
339
        if self.use_query_model:
            # this model embeds (pseudo-)queries - Embed_input in the paper
            self.query_model = BertModel(**bert_args)
            self._query_key = 'question_model'
340

341
342
343
344
        if self.use_block_model:
            # this model embeds evidence blocks - Embed_doc in the paper
            self.block_model = BertModel(**bert_args)
            self._block_key = 'context_model'
345

346
    def forward(self, query_tokens, query_attention_mask, block_tokens, block_attention_mask):
Neel Kant's avatar
Neel Kant committed
347
        """Run a forward pass for each of the models and compute the similarity scores."""
348
349
350
351
352
353
354
355
356
357
        query_logits = self.embed_query(query_tokens, query_attention_mask)
        block_logits = self.embed_block(block_tokens, block_attention_mask)

        # [batch x embed] * [embed x batch]
        retrieval_scores = query_logits.matmul(torch.transpose(block_logits, 0, 1))
        return retrieval_scores

    def embed_query(self, query_tokens, query_attention_mask):
        """Embed a batch of tokens using the query model"""
        if self.use_query_model:
Neel Kant's avatar
Neel Kant committed
358
            query_types = torch.zeros(query_tokens.shape).type(torch.int64).cuda()
359
360
361
362
363
364
365
366
            query_ict_logits, _ = self.query_model.forward(query_tokens, query_attention_mask, query_types)
            return query_ict_logits
        else:
            raise ValueError("Cannot embed query without query model.")

    def embed_block(self, block_tokens, block_attention_mask):
        """Embed a batch of tokens using the block model"""
        if self.use_block_model:
Neel Kant's avatar
Neel Kant committed
367
            block_types = torch.zeros(block_tokens.shape).type(torch.int64).cuda()
368
369
370
371
            block_ict_logits, _ = self.block_model.forward(block_tokens, block_attention_mask, block_types)
            return block_ict_logits
        else:
            raise ValueError("Cannot embed block without block model.")
372

373
    def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False):
Neel Kant's avatar
Neel Kant committed
374
        """Save dict with state dicts of each of the models."""
375
        state_dict_ = {}
376
377
378
379
380
381
382
383
384
385
        if self.use_query_model:
            state_dict_[self._query_key] \
                = self.query_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)

        if self.use_block_model:
            state_dict_[self._block_key] \
                = self.block_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)

386
387
388
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
Neel Kant's avatar
Neel Kant committed
389
        """Load the state dicts of each of the models"""
390
391
392
393
394
395
396
        if self.use_query_model:
            self.query_model.load_state_dict(
                state_dict[self._query_key], strict=strict)

        if self.use_block_model:
            self.block_model.load_state_dict(
                state_dict[self._block_key], strict=strict)