hashed_index.py 10.1 KB
Newer Older
Neel Kant's avatar
Neel Kant committed
1
from collections import defaultdict
Neel Kant's avatar
Neel Kant committed
2
import os
Neel Kant's avatar
Neel Kant committed
3
import pickle
Neel Kant's avatar
Neel Kant committed
4
import shutil
Neel Kant's avatar
Neel Kant committed
5

Neel Kant's avatar
Neel Kant committed
6
7
8
9
10
11
12
13
14
15
16
import numpy as np
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

from megatron import get_args
from megatron import mpu
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
from megatron.data.bert_dataset import get_indexed_dataset_
from megatron.data.ict_dataset import InverseClozeDataset
from megatron.data.samplers import DistributedBatchSampler
from megatron.initialize import initialize_megatron
Neel Kant's avatar
Neel Kant committed
17
from megatron.model import REALMRetriever
Neel Kant's avatar
Neel Kant committed
18
19
20
21
from megatron.training import get_model
from pretrain_bert_ict import get_batch, model_provider


22
23
24
25
def detach(tensor):
    return tensor.detach().cpu().numpy()


Neel Kant's avatar
Neel Kant committed
26
27
28
29
30
31
class HashedIndex(object):
    """Class for holding hashed data"""
    def __init__(self, embed_size, num_buckets, seed=0):
        np.random.seed(seed)
        self.block_data = defaultdict(list)
        self.hash_data = defaultdict(list)
Neel Kant's avatar
Neel Kant committed
32
33
        hash_matrix = np.random.rand(embed_size, int(num_buckets / 2))
        self.hash_matrix = hash_matrix / np.linalg.norm(hash_matrix, axis=0).reshape(1, -1)
Neel Kant's avatar
Neel Kant committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

    def state(self):
        state = {
            'block_data': self.block_data,
            'hash_data': self.hash_data,
            'hash_matrix': self.hash_matrix
        }
        return state

    def get_block_bucket(self, hash):
        return self.hash_data[hash]

    def get_block_embed(self, block_idx):
        return self.block_data[block_idx]

    def hash_embeds(self, embeds, block_data=None):
        """Hash a tensor of embeddings using a random projection matrix"""
Neel Kant's avatar
Neel Kant committed
51
        embed_scores_pos = torch.matmul(embeds, torch.cuda.FloatTensor(self.hash_matrix))
Neel Kant's avatar
Neel Kant committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        embed_scores = torch.cat((embed_scores_pos, -embed_scores_pos), axis=1)
        embed_hashes = detach(torch.argmax(embed_scores, axis=1))

        if block_data is not None:
            for hash, indices in zip(embed_hashes, block_data):
                self.hash_data[hash].append(indices)

        return embed_hashes

    def assign_block_embeds(self, block_indices, block_embeds, allow_overwrite=False):
        """Assign the embeddings for each block index into a hash map"""
        for idx, embed in zip(block_indices, block_embeds):
            if not allow_overwrite and int(idx) in self.block_data:
                raise ValueError("Attempted to overwrite a read-only HashedIndex")
Neel Kant's avatar
Neel Kant committed
66
            self.block_data[int(idx)] = np.float16(embed)
Neel Kant's avatar
Neel Kant committed
67
68
69
70
71
72
73
74
75
76

    def save_shard(self, rank):
        dir_name = 'block_hash_data'
        if not os.path.isdir(dir_name):
            os.mkdir(dir_name)

        # save the data for each shard
        with open('{}/{}.pkl'.format(dir_name, rank), 'wb') as data_file:
            pickle.dump(self.state(), data_file)

Neel Kant's avatar
Neel Kant committed
77
    def consolidate_shards_and_save(self, ignore_shard=0):
Neel Kant's avatar
Neel Kant committed
78
79
80
81
        """Combine all the shards made using self.save_shard()"""
        dir_name = 'block_hash_data'
        fnames = os.listdir(dir_name)
        for fname in fnames:
Neel Kant's avatar
Neel Kant committed
82
83
            if str(ignore_shard) in fname:
                continue
Neel Kant's avatar
Neel Kant committed
84
85
            with open('{}/{}'.format(dir_name, fname), 'rb') as f:
                data = pickle.load(f)
Neel Kant's avatar
Neel Kant committed
86
                assert np.array_equal(data['hash_matrix'], self.hash_matrix)
Neel Kant's avatar
Neel Kant committed
87
88
89
90

                old_size = len(self.block_data)
                shard_size = len(data['block_data'])
                self.block_data.update(data['block_data'])
Neel Kant's avatar
Neel Kant committed
91
                assert len(self.block_data) == old_size + shard_size, (old_size, shard_size, len(self.block_data))
Neel Kant's avatar
Neel Kant committed
92
93
94
95

                for bucket, items in data['hash_data'].items():
                    self.hash_data[bucket].extend(items)

Neel Kant's avatar
Neel Kant committed
96
97
        args = get_args()
        with open(args.hash_data_path, 'wb') as final_file:
Neel Kant's avatar
Neel Kant committed
98
99
100
101
102
103
104
105
            pickle.dump(self.state(), final_file)
        shutil.rmtree(dir_name, ignore_errors=True)

    def clear(self):
        """Clear the data structures to save memory"""
        self.block_data = defaultdict(list)
        self.hash_data = defaultdict(list)

Neel Kant's avatar
Neel Kant committed
106
107
    @classmethod
    def load_from_file(cls, fname):
Neel Kant's avatar
Neel Kant committed
108
        print(" > Unpickling block hash data")
Neel Kant's avatar
Neel Kant committed
109
        state_dict = pickle.load(open(fname, 'rb'))
Neel Kant's avatar
Neel Kant committed
110
        print(" > Finished unpickling")
Neel Kant's avatar
Neel Kant committed
111
112
113
114
115
116
117
118
        hash_matrix = state_dict['hash_matrix']

        new_index = HashedIndex(hash_matrix.shape[0], hash_matrix.shape[1] * 2)
        new_index.block_data = state_dict['block_data']
        new_index.hash_data = state_dict['hash_data']
        new_index.hash_matrix = hash_matrix
        return new_index

Neel Kant's avatar
Neel Kant committed
119

Neel Kant's avatar
Neel Kant committed
120
121
122
def test_retriever():
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
Neel Kant's avatar
Neel Kant committed
123
    args = get_args()
Neel Kant's avatar
Neel Kant committed
124
    model = load_ict_checkpoint(only_block_model=True)
Neel Kant's avatar
Neel Kant committed
125
    model.eval()
Neel Kant's avatar
Neel Kant committed
126
    dataset = get_ict_dataset()
Neel Kant's avatar
Neel Kant committed
127
    hashed_index = HashedIndex.load_from_file(args.hash_data_path)
Neel Kant's avatar
Neel Kant committed
128
    retriever = REALMRetriever(model, dataset, hashed_index)
Neel Kant's avatar
Neel Kant committed
129
130
131
132
133
134
135
136
137
138

    strs = [
        "The last monarch from the house of windsor",
        "married to Elvis Presley",
        "tallest building in the world today",
        "who makes graphics cards"
    ]

    for s in strs:
        retriever.retrieve_evidence_blocks_text(s)
Neel Kant's avatar
Neel Kant committed
139
140


Neel Kant's avatar
Neel Kant committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
def main():

    # TODO
    # consider broadcasting/all-reducing all in memory rather than using the filesystem
    # create a different process group in the same nccl world - don't have to use chkpts on disc or transfer things on disc
    # torch distributed new group, constains a list of rank, gives back a group which I can hand to the collective operations
    # create a training process group, indexing process group
    # pass the training group to the distributed DDP, instead of the large world process group
    # use indexing process group for the shard-combining
    # communication group between process "8" and process "0" which tells training group that there's a new index
    # also, process 0 sends process 8 the new model

    # if i want to launch a separate process for indexing, may have to work with environment variables to
    # allocate the resources well. Have to subsequently assign the correct gpus to the indexing job
    # consider initializing everything in a single group and break off processes based on the ranks

Neel Kant's avatar
Neel Kant committed
157
158
159
    # for debugging purposes, make it so that the training process group checks every some number of intervals
    # and if it isn't ready, then wait so that it's consistent. Start with using the filesystem

Neel Kant's avatar
Neel Kant committed
160
161
162
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
    args = get_args()
Neel Kant's avatar
Neel Kant committed
163
    model = load_ict_checkpoint(only_block_model=True, no_grad=True)
Neel Kant's avatar
Neel Kant committed
164
    model.eval()
Neel Kant's avatar
Neel Kant committed
165
    dataset = get_ict_dataset()
Neel Kant's avatar
Neel Kant committed
166
    data_iter = iter(get_dataloader(dataset))
Neel Kant's avatar
Neel Kant committed
167
    hashed_index = HashedIndex(embed_size=128, num_buckets=4096)
Neel Kant's avatar
Neel Kant committed
168

Neel Kant's avatar
Neel Kant committed
169
    i = 0
Neel Kant's avatar
Neel Kant committed
170
171
    while True:
        try:
Neel Kant's avatar
Neel Kant committed
172
173
            query_tokens, query_pad_mask, \
            block_tokens, block_pad_mask, block_indices = get_batch(data_iter)
174
        except:
Neel Kant's avatar
Neel Kant committed
175
            break
176

Neel Kant's avatar
Neel Kant committed
177
        block_indices = detach(block_indices)
Neel Kant's avatar
Neel Kant committed
178
        block_logits = model(None, None, block_tokens, block_pad_mask, only_block=True)
Neel Kant's avatar
Neel Kant committed
179
        hashed_index.hash_embeds(block_logits, block_indices)
Neel Kant's avatar
Neel Kant committed
180
        hashed_index.assign_block_embeds(block_indices[:,3], detach(block_logits))
Neel Kant's avatar
Neel Kant committed
181

Neel Kant's avatar
Neel Kant committed
182
183
        if i % 100 == 0:
            print(i, flush=True)
184
185
        i += 1

Neel Kant's avatar
Neel Kant committed
186
    hashed_index.save_shard(args.rank)
Neel Kant's avatar
Neel Kant committed
187
    torch.distributed.barrier()
188
189
    del model

Neel Kant's avatar
Neel Kant committed
190
    if mpu.get_data_parallel_rank() == 0:
Neel Kant's avatar
Neel Kant committed
191
192
193
        hashed_index.consolidate_shards_and_save()
    else:
        hashed_index.clear()
Neel Kant's avatar
Neel Kant committed
194
195


Neel Kant's avatar
Neel Kant committed
196
def load_ict_checkpoint(only_query_model=False, only_block_model=False, no_grad=False):
Neel Kant's avatar
Neel Kant committed
197
    args = get_args()
Neel Kant's avatar
Neel Kant committed
198
    model = get_model(lambda: model_provider(only_query_model, only_block_model))
Neel Kant's avatar
Neel Kant committed
199
200
201

    if isinstance(model, torchDDP):
        model = model.module
Neel Kant's avatar
Neel Kant committed
202
    tracker_filename = get_checkpoint_tracker_filename(args.ict_load)
Neel Kant's avatar
Neel Kant committed
203
204
205
206
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    assert iteration > 0
Neel Kant's avatar
Neel Kant committed
207
    checkpoint_name = get_checkpoint_name(args.ict_load, iteration, False)
Neel Kant's avatar
Neel Kant committed
208
209
210
211
212
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
Neel Kant's avatar
Neel Kant committed
213
214
215
216
217
218
219
220
221
    if only_query_model:
        state_dict['model'].pop('context_model')
    if only_block_model:
        state_dict['model'].pop('question_model')
    if no_grad:
        with torch.no_grad():
            model.load_state_dict(state_dict['model'])
    else:
        model.load_state_dict(state_dict['model'])
Neel Kant's avatar
Neel Kant committed
222
223
224
225
226
227
228
229
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

    return model


Neel Kant's avatar
Neel Kant committed
230
def get_ict_dataset():
Neel Kant's avatar
Neel Kant committed
231
    args = get_args()
Neel Kant's avatar
Neel Kant committed
232
    block_dataset = get_indexed_dataset_(args.data_path, 'mmap', True)
Neel Kant's avatar
Neel Kant committed
233
    titles_dataset = get_indexed_dataset_(args.titles_data_path, 'mmap', True)
Neel Kant's avatar
Neel Kant committed
234
235
236

    kwargs = dict(
        name='full',
Neel Kant's avatar
Neel Kant committed
237
238
        block_dataset=block_dataset,
        title_dataset=titles_dataset,
Neel Kant's avatar
Neel Kant committed
239
        data_prefix=args.data_path,
Neel Kant's avatar
Neel Kant committed
240
241
        num_epochs=1,
        max_num_samples=None,
Neel Kant's avatar
Neel Kant committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        max_seq_length=288,  # doesn't matter
        short_seq_prob=0.0001,  # doesn't matter
        seed=1
    )
    dataset = InverseClozeDataset(**kwargs)
    return dataset


def get_dataloader(dataset):
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    global_batch_size = args.batch_size * world_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=True,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


if __name__ == "__main__":
Neel Kant's avatar
Neel Kant committed
272
    main()