"server/text_generation_server/models/idefics_causal_lm.py" did not exist on "941cd42e0cd2d51bb37a6f84572ceda2976b890d"
helpers.cpp 22.8 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
/*
 coding=utf-8
Mohammad's avatar
Mohammad committed
3
 Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

     http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
 */


19
/* Helper methods for fast index mapping builds */
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
20
21
22
23
24

#include <algorithm>
#include <iostream>
#include <limits>
#include <math.h>
25
#include <stdexcept>
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
26
27
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
28
#include <random>
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
29
30
31
32

namespace py = pybind11;
using namespace std;

33
const int32_t LONG_SENTENCE_LEN = 512;
34

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
35

Mohammad's avatar
Mohammad committed
36
37
38
39
40
py::array build_sample_idx(const py::array_t<int32_t>& sizes_,
			   const py::array_t<int32_t>& doc_idx_,
			   const int32_t seq_length,
			   const int32_t num_epochs,
			   const int64_t tokens_per_epoch) {
Mohammad's avatar
Mohammad committed
41
42
43
44
    /* Sample index (sample_idx) is used for gpt2 like dataset for which
       the documents are flattened and the samples are built based on this
       1-D flatten array. It is a 2D array with sizes [number-of-samples + 1, 2]
       where [..., 0] contains the index into `doc_idx` and [..., 1] is the
Mohammad's avatar
Mohammad committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
       starting offset in that document.*/

    // Consistency checks.
    assert(seq_length > 1);
    assert(num_epochs > 0);
    assert(tokens_per_epoch > 1);

    // Remove bound checks.
    auto sizes = sizes_.unchecked<1>();
    auto doc_idx = doc_idx_.unchecked<1>();

    // Mapping and it's length (1D).
    int64_t num_samples = (num_epochs * tokens_per_epoch - 1) / seq_length;
    int32_t* sample_idx = new int32_t[2*(num_samples+1)];

    cout << "    using:" << endl << std::flush;
    cout << "     number of documents:       " <<
      doc_idx_.shape(0) / num_epochs << endl << std::flush;
    cout << "     number of epochs:          " << num_epochs <<
      endl << std::flush;
    cout << "     sequence length:           " << seq_length <<
      endl << std::flush;
    cout << "     total number of samples:   " << num_samples <<
      endl << std::flush;

    // Index into sample_idx.
    int64_t sample_index = 0;
    // Index into doc_idx.
    int64_t doc_idx_index = 0;
    // Begining offset for each document.
    int32_t doc_offset = 0;
    // Start with first document and no offset.
    sample_idx[2 * sample_index] = doc_idx_index;
    sample_idx[2 * sample_index + 1] = doc_offset;
    ++sample_index;

    while (sample_index <= num_samples) {
        // Start with a fresh sequence.
      int32_t remaining_seq_length = seq_length + 1;
      while (remaining_seq_length != 0) {
            // Get the document length.
	auto doc_id = doc_idx[doc_idx_index];
	auto doc_length = sizes[doc_id] - doc_offset;
	// And add it to the current sequence.
	remaining_seq_length -= doc_length;
	// If we have more than a full sequence, adjust offset and set
	// remaining length to zero so we return from the while loop.
	// Note that -1 here is for the same reason we have -1 in
	// `_num_epochs` calculations.
	if (remaining_seq_length <= 0) {
	  doc_offset += (remaining_seq_length + doc_length - 1);
	  remaining_seq_length = 0;
	} else {
	  // Otherwise, start from the begining of the next document.
	  ++doc_idx_index;
	  doc_offset = 0;
	}
      }
      // Record the sequence.
      sample_idx[2 * sample_index] = doc_idx_index;
      sample_idx[2 * sample_index + 1] = doc_offset;
      ++sample_index;
    }

    // Method to deallocate memory.
    py::capsule free_when_done(sample_idx, [](void *mem_) {
	int32_t *mem = reinterpret_cast<int32_t*>(mem_);
	delete[] mem;
      });

    // Return the numpy array.
    const auto byte_size = sizeof(int32_t);
    return py::array(std::vector<int64_t>{num_samples+1, 2}, // shape
                     {2*byte_size, byte_size}, // C-style contiguous strides
                     sample_idx, // the data pointer
                     free_when_done); // numpy array references
    
}


125
126
127
inline int32_t get_target_sample_len(const int32_t short_seq_ratio,
				     const int32_t max_length,
				     std::mt19937& rand32_gen) {
128
    /* Training sample length. */
129
    const auto random_number = rand32_gen();
130
    if ((random_number % short_seq_ratio) == 0) {
131
      return 2 + random_number % (max_length - 1);
132
133
    }
    return max_length;
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
134
135
}

136

137
template<typename DocIdx>
138
139
140
py::array build_mapping_impl(const py::array_t<int64_t>& docs_,
                             const py::array_t<int32_t>& sizes_,
                             const int32_t num_epochs,
141
                             const uint64_t max_num_samples,
142
                             const int32_t max_seq_length,
143
                             const double short_seq_prob,
144
145
146
147
148
149
150
151
152
153
154
155
156
                             const int32_t seed,
			     const bool verbose) {
    /* Build a mapping of (start-index, end-index, sequence-length) where
       start and end index are the indices of the sentences in the sample
       and sequence-length is the target sequence length.
    */

    // Consistency checks.
    assert(num_epochs > 0);
    assert(max_seq_length > 1);
    assert(short_seq_prob > 0.0);
    assert(short_seq_prob <= 1.0);
    assert(seed > 0);
157
158
159
160

    // Remove bound checks.
    auto docs = docs_.unchecked<1>();
    auto sizes = sizes_.unchecked<1>();
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

    // For efficiency, convert probability to ratio. Note: rand() generates int.
    const auto short_seq_ratio = static_cast<int32_t>(round(1.0 / short_seq_prob));

    if (verbose) {
        const auto sent_start_index = docs[0];
	const auto sent_end_index = docs[docs_.shape(0) - 1];
	const auto num_sentences = sent_end_index - sent_start_index;
	cout << "    using:" << endl << std::flush;
	cout << "     number of documents:            " << docs_.shape(0) - 1 <<
	  endl << std::flush;
	cout << "     sentences range:                [" << sent_start_index <<
	", " << sent_end_index << ")" << endl << std::flush;
	cout << "     total number of sentences:      " << num_sentences <<
	  endl << std::flush;
	cout << "     number of epochs:               " << num_epochs <<
	  endl << std::flush;
	cout << "     maximum number of samples:      " << max_num_samples <<
	  endl << std::flush;
	cout << "     maximum sequence length:        " << max_seq_length <<
	  endl << std::flush;
	cout << "     short sequence probability:     " << short_seq_prob <<
	endl << std::flush;
	cout << "     short sequence ration (1/prob): " << short_seq_ratio <<
	  endl << std::flush;
	cout << "     seed:                           " << seed << endl <<
	  std::flush;
188
    }
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
189

190
191
192
193
194
195
196
    // Mapping and it's length (1D).
    int64_t num_samples = -1;
    DocIdx* maps = NULL;

    // Perform two iterations, in the first iteration get the size
    // and allocate memory and in the second iteration populate the map.
    bool second = false;
197
    for (int32_t iteration=0; iteration<2; ++iteration) {
198
199

        // Set the seed so both iterations produce the same results.
200
        std::mt19937 rand32_gen(seed);
201
202

        // Set the flag on second iteration.
203
        second = (iteration == 1);
204
205

        // Counters:
206
207
        uint64_t empty_docs = 0;
        uint64_t one_sent_docs = 0;
208
	uint64_t long_sent_docs = 0;
209
210
211
212
213

        // Current map index.
        uint64_t map_index = 0;

        // For each epoch:
214
215
216
        for (int32_t epoch=0; epoch<num_epochs; ++epoch) {
            if (map_index >= max_num_samples) {
	        if (verbose && (!second)) {
217
		  cout << "    reached " << max_num_samples << " samples after "
218
219
		       << epoch << " epochs ..." << endl << std::flush;
		}
220
221
222
                break;
            }
            // For each document:
223
            for (int32_t doc=0; doc<(docs.shape(0) - 1); ++doc) {
224

225
                // Document sentences are in [sent_index_first, sent_index_last)
226
227
228
                const auto sent_index_first = docs[doc];
                const auto sent_index_last = docs[doc + 1];

229
230
                // At the begining of the document previous index is the
		// start index.
231
232
233
234
235
236
237
238
                auto prev_start_index = sent_index_first;

                // Remaining documents.
                auto num_remain_sent = sent_index_last - sent_index_first;

                // Some bookkeeping
                if ((epoch == 0) && (!second)) {
                    if (num_remain_sent == 0) {
239
		        ++empty_docs;
240
241
                    }
                    if (num_remain_sent == 1) {
242
		        ++one_sent_docs;
243
244
245
                    }
                }

246
		// Detect documents with long sentences.
247
248
249
250
251
252
253
254
255
256
257
258
259
260
		bool contains_long_sentence = false;
		if (num_remain_sent > 1) {
		    for (auto sent_index=sent_index_first;
			 sent_index < sent_index_last; ++sent_index) {
		        if (sizes[sent_index] > LONG_SENTENCE_LEN){
			    if ((epoch == 0) && (!second)) {
			        ++long_sent_docs;
			    }
			    contains_long_sentence = true;
			    break;
			}
		    }
		}

261
                // If we have more than two sentences.
262
                if ((num_remain_sent > 1) && (!contains_long_sentence)) {
263
264

                    // Set values.
265
266
267
268
269
                    auto seq_len = int32_t{0};
                    auto num_sent = int32_t{0};
                    auto target_seq_len = get_target_sample_len(short_seq_ratio,
								max_seq_length,
								rand32_gen);
270
271
272
273
274

                    // Loop through sentences.
                    for (auto sent_index=sent_index_first;
                         sent_index < sent_index_last; ++sent_index) {

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
		        // Add the size and number of sentences.
		        seq_len += sizes[sent_index];
		        ++num_sent;
			--num_remain_sent;

			// If we have reached the target length.
			// and if not only one sentence is left in the document.
			// and if we have at least two sentneces.
			// and if we have reached end of the document.
			if (((seq_len >= target_seq_len) &&
			     (num_remain_sent > 1) &&
			     (num_sent > 1) ) || (num_remain_sent == 0)) {

			    // Check for overflow.
			    if ((3 * map_index + 2) >
				std::numeric_limits<int64_t>::max()) {
			        cout << "number of samples exceeded maximum "
				     << "allowed by type int64: "
				     << std::numeric_limits<int64_t>::max()
				     << endl;
				throw std::overflow_error("Number of samples");
			    }

			    // Populate the map.
			    if (second) {
			        const auto map_index_0 = 3 * map_index;
				maps[map_index_0] = static_cast<DocIdx>(prev_start_index);
				maps[map_index_0 + 1] = static_cast<DocIdx>(sent_index + 1);
				maps[map_index_0 + 2] = static_cast<DocIdx>(target_seq_len);
			    }

			    // Update indices / counters.
			    ++map_index;
			    prev_start_index = sent_index + 1;
			    target_seq_len = get_target_sample_len(short_seq_ratio,
								   max_seq_length,
								   rand32_gen);
			    seq_len = 0;
			    num_sent = 0;
			}

                    } // for (auto sent_index=sent_index_first; ...
317
318
319
320
321
                } // if (num_remain_sent > 1) {
            } // for (int doc=0; doc < num_docs; ++doc) {
        } // for (int epoch=0; epoch < num_epochs; ++epoch) {

        if (!second) {
322
	    if (verbose) {
323
	        cout << "   number of empty documents: " << empty_docs <<
324
		  endl << std::flush;
325
		cout << "   number of documents with one sentence: " <<
326
		  one_sent_docs << endl << std::flush;
327
328
		cout << "   number of documents with long sentences: " <<
		  long_sent_docs << endl << std::flush;
329
		cout << "   will create mapping for " << map_index <<
330
331
332
333
		  " samples" << endl << std::flush;
	    }
	    assert(maps == NULL);
	    assert(num_samples < 0);
334
            maps = new DocIdx[3*map_index];
335
            num_samples = static_cast<int64_t>(map_index);
336
337
338
339
340
        }

    } // for (int iteration=0; iteration < 2; ++iteration) {

    // Shuffle.
341
342
343
    // We need a 64 bit random number generator as we might have more
    // than 2 billion samples.
    std::mt19937_64 rand64_gen(seed + 1);
344
    for (auto i=(num_samples - 1); i > 0; --i) {
345
346
347
348
349
350
351
      const auto j = static_cast<int64_t>(rand64_gen() % (i + 1));
      const auto i0 = 3 * i;
      const auto j0 = 3 * j;
      // Swap values.
      swap(maps[i0], maps[j0]);
      swap(maps[i0 + 1], maps[j0 + 1]);
      swap(maps[i0 + 2], maps[j0 + 2]);
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
352
353
    }

354
355
356
    // Method to deallocate memory.
    py::capsule free_when_done(maps, [](void *mem_) {
            DocIdx *mem = reinterpret_cast<DocIdx*>(mem_);
357
	    delete[] mem;
358
        });
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
359

360
    // Return the numpy array.
361
    const auto byte_size = sizeof(DocIdx);
362
    return py::array(std::vector<int64_t>{num_samples, 3}, // shape
363
                     {3*byte_size, byte_size}, // C-style contiguous strides
364
365
                     maps, // the data pointer
                     free_when_done); // numpy array references
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
366

367
}
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
368

369
370
371

py::array build_mapping(const py::array_t<int64_t>& docs_,
                        const py::array_t<int>& sizes_,
372
373
374
375
                        const int num_epochs,
                        const uint64_t max_num_samples,
                        const int max_seq_length,
                        const double short_seq_prob,
376
377
378
                        const int seed,
			const bool verbose) {

379
    if (sizes_.size() > std::numeric_limits<uint32_t>::max()) {
380
        if (verbose) {
381
382
383
	   cout << "    using uint64 for data mapping..." << endl << std::flush;
	}
	return build_mapping_impl<uint64_t>(docs_, sizes_, num_epochs,
384
385
					    max_num_samples, max_seq_length,
					    short_seq_prob, seed, verbose);
386
    } else {
387
388
389
390
391
392
       if (verbose) {
	   cout << "    using uint32 for data mapping..." << endl << std::flush;
       }
       return build_mapping_impl<uint32_t>(docs_, sizes_, num_epochs,
					   max_num_samples, max_seq_length,
					   short_seq_prob, seed, verbose);
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
393
394
395
    }
}

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
template<typename DocIdx>
py::array build_blocks_mapping_impl(const py::array_t<int64_t>& docs_,
                                    const py::array_t<int32_t>& sizes_,
                                    const py::array_t<int32_t>& titles_sizes_,
                                    const int32_t num_epochs,
                                    const uint64_t max_num_samples,
                                    const int32_t max_seq_length,
                                    const int32_t seed,
                                    const bool verbose) {
    /* Build a mapping of (start-index, end-index, sequence-length) where
       start and end index are the indices of the sentences in the sample
       and sequence-length is the target sequence length.
    */

    // Consistency checks.
    assert(num_epochs > 0);
    assert(max_seq_length > 1);
    assert(seed > 0);

    // Remove bound checks.
    auto docs = docs_.unchecked<1>();
    auto sizes = sizes_.unchecked<1>();
    auto titles_sizes = titles_sizes_.unchecked<1>();

    if (verbose) {
        const auto sent_start_index = docs[0];
        const auto sent_end_index = docs[docs_.shape(0) - 1];
        const auto num_sentences = sent_end_index - sent_start_index;
        cout << "    using:" << endl << std::flush;
        cout << "     number of documents:            " << docs_.shape(0) - 1 <<
          endl << std::flush;
        cout << "     sentences range:                [" << sent_start_index <<
        ", " << sent_end_index << ")" << endl << std::flush;
        cout << "     total number of sentences:      " << num_sentences <<
          endl << std::flush;
        cout << "     number of epochs:               " << num_epochs <<
          endl << std::flush;
        cout << "     maximum number of samples:      " << max_num_samples <<
          endl << std::flush;
        cout << "     maximum sequence length:        " << max_seq_length <<
          endl << std::flush;
        cout << "     seed:                           " << seed << endl <<
          std::flush;
    }

    // Mapping and its length (1D).
    int64_t num_samples = -1;
    DocIdx* maps = NULL;

    // Perform two iterations, in the first iteration get the size
    // and allocate memory and in the second iteration populate the map.
    bool second = false;
    for (int32_t iteration=0; iteration<2; ++iteration) {

        // Set the flag on second iteration.
        second = (iteration == 1);

        // Current map index.
        uint64_t map_index = 0;

        // For each epoch:
        for (int32_t epoch=0; epoch<num_epochs; ++epoch) {
458
459
460
            // assign every block a unique id
            int32_t block_id = 0;

461
462
463
464
465
466
467
468
469
470
471
472
473
            if (map_index >= max_num_samples) {
                if (verbose && (!second)) {
                cout << "    reached " << max_num_samples << " samples after "
                     << epoch << " epochs ..." << endl << std::flush;
                }
                break;
            }
            // For each document:
            for (int32_t doc=0; doc<(docs.shape(0) - 1); ++doc) {

                // Document sentences are in [sent_index_first, sent_index_last)
                const auto sent_index_first = docs[doc];
                const auto sent_index_last = docs[doc + 1];
Neel Kant's avatar
Neel Kant committed
474
                const auto target_seq_len = max_seq_length - titles_sizes[doc];
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

                // At the begining of the document previous index is the
                // start index.
                auto prev_start_index = sent_index_first;

                // Remaining documents.
                auto num_remain_sent = sent_index_last - sent_index_first;

                // Detect documents with long sentences.
                bool contains_long_sentence = false;
                if (num_remain_sent > 1) {
                    for (auto sent_index=sent_index_first;
                    sent_index < sent_index_last; ++sent_index) {
                        if (sizes[sent_index] > LONG_SENTENCE_LEN){
                            contains_long_sentence = true;
                            break;
                        }
                    }
                }
                // If we have more than two sentences.
                if ((num_remain_sent > 1) && (!contains_long_sentence)) {

                    // Set values.
                    auto seq_len = int32_t{0};
                    auto num_sent = int32_t{0};

                    // Loop through sentences.
                    for (auto sent_index=sent_index_first;
                         sent_index < sent_index_last; ++sent_index) {

                            // Add the size and number of sentences.
                            seq_len += sizes[sent_index];
                            ++num_sent;
                            --num_remain_sent;

                        // If we have reached the target length.
                        // and if not only one sentence is left in the document.
                        // and if we have at least two sentneces.
                        // or if we have reached end of the document.
                        if (((seq_len >= target_seq_len) &&
                             (num_remain_sent > 1) &&
                             (num_sent > 1) ) || (num_remain_sent == 0)) {

                            // Populate the map.
                            if (second) {
Neel Kant's avatar
Neel Kant committed
520
                                const auto map_index_0 = 4 * map_index;
521
522
523
524
                                // Each sample has 4 items: the starting sentence index, ending sentence index,
                                // the index of the document from which the block comes (used for fetching titles)
                                // and the unique id of the block (used for creating block indexes)

525
526
                                maps[map_index_0] = static_cast<DocIdx>(prev_start_index);
                                maps[map_index_0 + 1] = static_cast<DocIdx>(sent_index + 1);
527
                                maps[map_index_0 + 2] = static_cast<DocIdx>(doc);
Neel Kant's avatar
Neel Kant committed
528
                                maps[map_index_0 + 3] = static_cast<DocIdx>(block_id);
529
530
531
532
                            }

                            // Update indices / counters.
                            ++map_index;
Neel Kant's avatar
Neel Kant committed
533
                            ++block_id;
534
535
536
537
538
539
540
                            prev_start_index = sent_index + 1;
                            seq_len = 0;
                            num_sent = 0;
                        }
                    } // for (auto sent_index=sent_index_first; ...
                } // if (num_remain_sent > 1) {
            } // for (int doc=0; doc < num_docs; ++doc) {
Neel Kant's avatar
Neel Kant committed
541
            block_id = 0;
542
543
544
545
546
547
548
549
550
        } // for (int epoch=0; epoch < num_epochs; ++epoch) {

        if (!second) {
            if (verbose) {
            cout << "   will create mapping for " << map_index <<
              " samples" << endl << std::flush;
            }
            assert(maps == NULL);
            assert(num_samples < 0);
Neel Kant's avatar
Neel Kant committed
551
            maps = new DocIdx[4*map_index];
552
553
554
555
556
557
558
559
560
561
562
            num_samples = static_cast<int64_t>(map_index);
        }

    } // for (int iteration=0; iteration < 2; ++iteration) {

    // Shuffle.
    // We need a 64 bit random number generator as we might have more
    // than 2 billion samples.
    std::mt19937_64 rand64_gen(seed + 1);
    for (auto i=(num_samples - 1); i > 0; --i) {
        const auto j = static_cast<int64_t>(rand64_gen() % (i + 1));
Neel Kant's avatar
Neel Kant committed
563
564
        const auto i0 = 4 * i;
        const auto j0 = 4 * j;
565
566
567
568
        // Swap values.
        swap(maps[i0], maps[j0]);
        swap(maps[i0 + 1], maps[j0 + 1]);
        swap(maps[i0 + 2], maps[j0 + 2]);
Neel Kant's avatar
Neel Kant committed
569
        swap(maps[i0 + 3], maps[j0 + 3]);
570
571
572
573
574
575
576
577
578
579
    }

    // Method to deallocate memory.
    py::capsule free_when_done(maps, [](void *mem_) {
            DocIdx *mem = reinterpret_cast<DocIdx*>(mem_);
	    delete[] mem;
        });

    // Return the numpy array.
    const auto byte_size = sizeof(DocIdx);
Neel Kant's avatar
Neel Kant committed
580
581
    return py::array(std::vector<int64_t>{num_samples, 4}, // shape
                     {4*byte_size, byte_size}, // C-style contiguous strides
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
                     maps, // the data pointer
                     free_when_done); // numpy array references

}

py::array build_blocks_mapping(const py::array_t<int64_t>& docs_,
                               const py::array_t<int>& sizes_,
                               const py::array_t<int>& titles_sizes_,
                               const int num_epochs,
                               const uint64_t max_num_samples,
                               const int max_seq_length,
                               const int seed,
                    const bool verbose) {

    if (sizes_.size() > std::numeric_limits<uint32_t>::max()) {
        if (verbose) {
	   cout << "    using uint64 for data mapping..." << endl << std::flush;
	}
	return build_blocks_mapping_impl<uint64_t>(docs_, sizes_, titles_sizes_,
	                    num_epochs, max_num_samples, max_seq_length, seed, verbose);
    } else {
       if (verbose) {
	   cout << "    using uint32 for data mapping..." << endl << std::flush;
       }
       return build_blocks_mapping_impl<uint32_t>(docs_, sizes_, titles_sizes_,
                        num_epochs, max_num_samples, max_seq_length, seed, verbose);
    }
}
610

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
611
PYBIND11_MODULE(helpers, m) {
612
    m.def("build_mapping", &build_mapping);
Neel Kant's avatar
Neel Kant committed
613
    m.def("build_blocks_mapping", &build_blocks_mapping);
Mohammad's avatar
Mohammad committed
614
    m.def("build_sample_idx", &build_sample_idx);
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
615
}