gpt_dataset.py 21.6 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
"""GPT style dataset."""
Mohammad's avatar
Mohammad committed
17

18
import os
19
import time
Mohammad's avatar
Mohammad committed
20

21
import numpy as np
22
23
import torch

24
from megatron import mpu, print_rank_0
mohammad's avatar
mohammad committed
25
26
from megatron.data.blendable_dataset import BlendableDataset
from megatron.data.dataset_utils import get_datasets_weights_and_num_samples
Neel Kant's avatar
Neel Kant committed
27
from megatron.data.dataset_utils import get_train_valid_test_split_
28
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
29
30


31
32
33
34
35
def build_train_valid_test_datasets(data_prefix, data_impl,
                                    splits_string, train_valid_test_num_samples,
                                    seq_length, seed, skip_warmup,
                                    train_data_prefix=None, valid_data_prefix=None,
                                    test_data_prefix=None,):
36
37
    """Build train, valid, and test datasets."""

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    if data_prefix:
        print_rank_0("Single data path provided for train, valid & test")
        # Single dataset.
        if len(data_prefix) == 1:
            return _build_train_valid_test_datasets(data_prefix[0],
                                                    data_impl, splits_string,
                                                    train_valid_test_num_samples,
                                                    seq_length, seed, skip_warmup)

        # Blending dataset.
        # Parse the values.
        output = get_datasets_weights_and_num_samples(data_prefix,
                                                    train_valid_test_num_samples)
        prefixes, weights, datasets_train_valid_test_num_samples = output

        # Build individual datasets.
        train_datasets = []
        valid_datasets = []
        test_datasets = []
        for i in range(len(prefixes)):
            train_ds, valid_ds, test_ds = _build_train_valid_test_datasets(
                prefixes[i], data_impl, splits_string,
                datasets_train_valid_test_num_samples[i],
                seq_length, seed, skip_warmup)
            if train_ds:
                train_datasets.append(train_ds)
            if valid_ds:
                valid_datasets.append(valid_ds)
            if test_ds:
                test_datasets.append(test_ds)

        # Blend.
        blending_train_dataset = None
        if train_datasets:
            blending_train_dataset = BlendableDataset(train_datasets, weights)
        blending_valid_dataset = None
        if valid_datasets:
            blending_valid_dataset = BlendableDataset(valid_datasets, weights)
        blending_test_dataset = None
        if test_datasets:
            blending_test_dataset = BlendableDataset(test_datasets, weights)

        return (blending_train_dataset, blending_valid_dataset,
                blending_test_dataset)
    else:
        print_rank_0("Separate data paths provided for train, valid & test. Split string will be ignored.")
84

85
86
        train_dataset, valid_dataset, test_dataset = None, None, None
        # Single dataset.
87
88
89
90
        if train_data_prefix is not None:
            train_dataset = build_dataset("train", train_data_prefix, data_impl,
                                        train_valid_test_num_samples[0], seq_length, seed,
                                        skip_warmup)
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

        if valid_data_prefix is not None:
            valid_dataset = build_dataset("valid", valid_data_prefix, data_impl,
                                    train_valid_test_num_samples[1], seq_length, seed,
                                    False)

        if test_data_prefix is not None:
            test_dataset = build_dataset("test", test_data_prefix, data_impl,
                                    train_valid_test_num_samples[2], seq_length, seed,
                                    False)

        return (train_dataset, valid_dataset, test_dataset)


def build_dataset(dataset_name, data_prefix, data_impl, num_samples, seq_length, seed, skip_warmup):
    dataset = None
mohammad's avatar
mohammad committed
107
    if len(data_prefix) == 1:
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        dataset = _build_dataset(dataset_name,
                        data_prefix[0], data_impl,
                        num_samples, seq_length,
                        seed, skip_warmup)
    else:
        # Blending dataset.
        # Parse the values.
        output = get_datasets_weights_and_num_samples(data_prefix, num_samples)
        prefixes, weights, dataset_num_samples = output

        # Build individual datasets.
        datasets = []
        for i in range(len(prefixes)):
            ds = _build_dataset(dataset_name, prefixes[i],
                            data_impl, dataset_num_samples[i],
                            seq_length, seed, skip_warmup)
            if ds:
                datasets.append(ds)

        if datasets:
            dataset = BlendableDataset(datasets, weights)

    return dataset


def _build_dataset(dataset_name, data_prefix, data_impl,
                num_samples, seq_length, seed, skip_warmup):
    """
    Build dataset. This method is called when individual
    train, valid, test datasets are provided
    """

    # Indexed dataset.
    indexed_dataset = get_indexed_dataset_(data_prefix,
                                           data_impl,
                                           skip_warmup)

    total_num_of_documents = indexed_dataset.sizes.shape[0]

    print_rank_0('    {}:'.format(dataset_name))
    print_rank_0('     document indices in [0, {}) total of {} '
                 'documents'.format(total_num_of_documents, total_num_of_documents))

    documents = np.arange(start=0, stop=total_num_of_documents,
                        step=1, dtype=np.int32)

    dataset = GPTDataset(dataset_name, data_prefix,
                        documents, indexed_dataset,
                        num_samples, seq_length, seed)

    return dataset
mohammad's avatar
mohammad committed
159
160
161
162
163


def _build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
                                     train_valid_test_num_samples,
                                     seq_length, seed, skip_warmup):
164
165
166
167
168
169
170
171
172
173
174
175
    """Build train, valid, and test datasets."""

    # Indexed dataset.
    indexed_dataset = get_indexed_dataset_(data_prefix,
                                           data_impl,
                                           skip_warmup)

    total_num_of_documents = indexed_dataset.sizes.shape[0]
    splits = get_train_valid_test_split_(splits_string, total_num_of_documents)

    # Print stats about the splits.
    print_rank_0(' > dataset split:')
Neel Kant's avatar
Neel Kant committed
176

177
178
179
180
181
182
183
184
185
186
187
188
    def print_split_stats(name, index):
        print_rank_0('    {}:'.format(name))
        print_rank_0('     document indices in [{}, {}) total of {} '
                     'documents'.format(splits[index], splits[index + 1],
                                        splits[index + 1] - splits[index]))
    print_split_stats('train', 0)
    print_split_stats('validation', 1)
    print_split_stats('test', 2)

    def build_dataset(index, name):
        dataset = None
        if splits[index + 1] > splits[index]:
Neel Kant's avatar
Neel Kant committed
189
            documents = np.arange(start=splits[index], stop=splits[index + 1],
190
                                  step=1, dtype=np.int32)
191
            dataset = GPTDataset(name, data_prefix,
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
                                  documents, indexed_dataset,
                                  train_valid_test_num_samples[index],
                                  seq_length, seed)
        return dataset

    train_dataset = build_dataset(0, 'train')
    valid_dataset = build_dataset(1, 'valid')
    test_dataset = build_dataset(2, 'test')

    return (train_dataset, valid_dataset, test_dataset)


def get_indexed_dataset_(data_prefix, data_impl, skip_warmup):
    """Build indexed dataset."""
    print_rank_0(' > building dataset index ...')

    start_time = time.time()
    indexed_dataset = make_indexed_dataset(data_prefix,
                                           data_impl,
                                           skip_warmup)
    print_rank_0(' > finished creating indexed dataset in {:4f} '
                 'seconds'.format(time.time() - start_time))
    print_rank_0('    number of documents: {}'.format(
        indexed_dataset.sizes.shape[0]))

    return indexed_dataset


220
class GPTDataset(torch.utils.data.Dataset):
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

    def __init__(self, name, data_prefix, documents, indexed_dataset,
                 num_samples, seq_length, seed):

        self.name = name
        self.indexed_dataset = indexed_dataset

        # Checks
        assert np.min(documents) >= 0
        assert np.max(documents) < indexed_dataset.sizes.shape[0]

        # Build index mappings.
        self.doc_idx, self.sample_idx, self.shuffle_idx = _build_index_mappings(
            self.name, data_prefix, documents, self.indexed_dataset.sizes,
            num_samples, seq_length, seed)

237
    def __len__(self):
238
239
240
        # -1 is due to data structure used to retieve the index:
        #    sample i --> [sample_idx[i], sample_idx[i+1])
        return self.sample_idx.shape[0] - 1
241

242
    def __getitem__(self, idx):
243
244
245
246
        # Get the shuffled index.
        idx = self.shuffle_idx[idx]
        # Start and end documents and offsets.
        doc_index_f = self.sample_idx[idx][0]
Neel Kant's avatar
Neel Kant committed
247
        doc_index_l = self.sample_idx[idx + 1][0]
248
        offset_f = self.sample_idx[idx][1]
Neel Kant's avatar
Neel Kant committed
249
        offset_l = self.sample_idx[idx + 1][1]
250
251
252
253
254
255
256
257
258
259
        # If we are within the same document, just extract the chunk.
        if doc_index_f == doc_index_l:
            sample = self.indexed_dataset.get(self.doc_idx[doc_index_f],
                                              offset=offset_f,
                                              length=offset_l - offset_f + 1)
        else:
            # Otherwise, get the rest of the initial document.
            sample_list = [self.indexed_dataset.get(self.doc_idx[doc_index_f],
                                                    offset=offset_f)]
            # Loop over all in between documents and add the entire document.
Neel Kant's avatar
Neel Kant committed
260
            for i in range(doc_index_f + 1, doc_index_l):
261
262
263
264
                sample_list.append(self.indexed_dataset.get(self.doc_idx[i]))
            # And finally add the relevant portion of last document.
            sample_list.append(self.indexed_dataset.get(
                self.doc_idx[doc_index_l],
Neel Kant's avatar
Neel Kant committed
265
                length=offset_l + 1))
266
267
268
269
270
271
272
            sample = np.concatenate(sample_list)

        return {'text': np.array(sample, dtype=np.int64)}


def _build_index_mappings(name, data_prefix, documents, sizes,
                          num_samples, seq_length, seed):
273
274
275
276
277
278
    """Build doc-idx, sample-idx, and shuffle-idx.
    doc-idx: is an array (ordered) of documents to be used in training.
    sample-idx: is the start document index and document offset for each
       training sample.
    shuffle-idx: maps the sample index into a random index into sample-idx.
    """
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    # Number of tokens in each epoch and number of required epochs.
    tokens_per_epoch = _num_tokens(documents, sizes)
    num_epochs = _num_epochs(tokens_per_epoch, seq_length, num_samples)
    # rng state
    np_rng = np.random.RandomState(seed=seed)

    # Filename of the index mappings.
    _filename = data_prefix
    _filename += '_{}_indexmap'.format(name)
    _filename += '_{}ns'.format(num_samples)
    _filename += '_{}sl'.format(seq_length)
    _filename += '_{}s'.format(seed)
    doc_idx_filename = _filename + '_doc_idx.npy'
    sample_idx_filename = _filename + '_sample_idx.npy'
    shuffle_idx_filename = _filename + '_shuffle_idx.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0:
        if (not os.path.isfile(doc_idx_filename)) or \
           (not os.path.isfile(sample_idx_filename)) or \
           (not os.path.isfile(shuffle_idx_filename)):

            print_rank_0(' > WARNING: could not find index map files, building '
                         'the indices on rank 0 ...')
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

            # For the last epoch, decide whether include the entire epoch
            # in the global shuffle or not.

            # If we need only one epoch, then separating last epoch  does
            # not mean anything.
            if num_epochs == 1:
                separate_last_epoch = False
                print(' > only one epoch required, setting '
                      'separate_last_epoch to False', flush=True)

            else:
                # Get the number of samples for the last epoch
                num_samples_from_epochs_minus_one = (
                    (num_epochs - 1) * tokens_per_epoch - 1) // seq_length
                last_epoch_num_samples = num_samples - \
                                         num_samples_from_epochs_minus_one
                assert last_epoch_num_samples >= 0, \
                    'last epoch number of samples should be non-negative.'
                num_samples_per_epoch = (tokens_per_epoch - 1) // seq_length
                assert last_epoch_num_samples < (num_samples_per_epoch + 1), \
                    'last epoch number of samples exceeded max value.'
                # If we have less than 80% of the samples for the last epoch,
                # seperate out the epoch and treat it differently.
327
328
                # Note: the 80% number is just based on common sense and can
                # be adjusted if needed.
329
330
331
332
333
334
335
336
337
338
339
340
341
                separate_last_epoch = (last_epoch_num_samples <
                                       int(0.80 * num_samples_per_epoch))
                if separate_last_epoch:
                    string = ' > last epoch number of samples ({}) is smaller '\
                             'than 80% of number of samples per epoch ({}), '\
                             'setting separate_last_epoch to True'
                else:
                    string = ' > last epoch number of samples ({}) is larger '\
                             'than 80% of number of samples per epoch ({}), '\
                             'setting separate_last_epoch to False'
                print(string.format(last_epoch_num_samples,
                                    num_samples_per_epoch), flush=True)

342
343
            # doc-idx.
            start_time = time.time()
344
345
            doc_idx = _build_doc_idx(documents, num_epochs, np_rng,
                                     separate_last_epoch)
346
347
348
349
350
351
            np.save(doc_idx_filename, doc_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save doc-idx mapping '
                         '(seconds): {:4f}'.format(time.time() - start_time))
            # sample-idx.
            start_time = time.time()
            # Use C++ implementation for speed.
352
            # First compile and then import.
353
354
355
356
357
            from megatron.data import helpers
            assert doc_idx.dtype == np.int32
            assert sizes.dtype == np.int32
            sample_idx = helpers.build_sample_idx(sizes, doc_idx, seq_length,
                                                  num_epochs, tokens_per_epoch)
Neel Kant's avatar
Neel Kant committed
358
            # sample_idx = _build_sample_idx(sizes, doc_idx, seq_length,
359
360
361
362
363
364
            #                               num_epochs, tokens_per_epoch)
            np.save(sample_idx_filename, sample_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save sample-idx mapping '
                         '(seconds): {:4f}'.format(time.time() - start_time))
            # shuffle-idx.
            start_time = time.time()
365
366
            # -1 is due to data structure used to retieve the index:
            #    sample i --> [sample_idx[i], sample_idx[i+1])
367
368
369
370
371
372
            if separate_last_epoch:
                num_samples_ = num_samples_from_epochs_minus_one
            else:
                num_samples_ = sample_idx.shape[0] - 1
            shuffle_idx = _build_shuffle_idx(num_samples_,
                                             sample_idx.shape[0] - 1, np_rng)
373
374
375
376
377
378
379
380
381
            np.save(shuffle_idx_filename, shuffle_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save shuffle-idx mapping'
                         ' (seconds): {:4f}'.format(time.time() - start_time))

    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
382
    torch.distributed.all_reduce(counts, group=mpu.get_pipeline_model_parallel_group())
383
384
    assert counts[0].item() == (
        torch.distributed.get_world_size() //
385
        torch.distributed.get_world_size(group=mpu.get_tensor_model_parallel_group()))
386
387
388
389
390

    # Load mappings.
    start_time = time.time()
    print_rank_0(' > loading doc-idx mapping from {}'.format(
        doc_idx_filename))
Raul Puri's avatar
Raul Puri committed
391
    doc_idx = np.load(doc_idx_filename, allow_pickle=True, mmap_mode='r')
392
393
    print_rank_0(' > loading sample-idx mapping from {}'.format(
        sample_idx_filename))
Raul Puri's avatar
Raul Puri committed
394
    sample_idx = np.load(sample_idx_filename, allow_pickle=True, mmap_mode='r')
395
396
    print_rank_0(' > loading shuffle-idx mapping from {}'.format(
        shuffle_idx_filename))
Raul Puri's avatar
Raul Puri committed
397
    shuffle_idx = np.load(shuffle_idx_filename, allow_pickle=True, mmap_mode='r')
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('    total number of samples: {}'.format(
        sample_idx.shape[0]))
    print_rank_0('    total number of epochs: {}'.format(num_epochs))

    return doc_idx, sample_idx, shuffle_idx


def _num_tokens(documents, sizes):
    """Total number of tokens in the dataset."""
    return np.sum(sizes[documents])


def _num_epochs(tokens_per_epoch, seq_length, num_samples):
    """Based on number of samples and sequence lenght, calculate how many
    epochs will be needed."""
    num_epochs = 0
    total_tokens = 0
    while True:
        num_epochs += 1
        total_tokens += tokens_per_epoch
        # -1 is because we need to retrieve seq_length + 1 token each time
        # but the last token will overlap with the first token of the next
        # sample except for the last sample.
        if ((total_tokens - 1) // seq_length) >= num_samples:
            return num_epochs


427
def _build_doc_idx(documents, num_epochs, np_rng, separate_last_epoch):
428
429
    """Build an array with length = number-of-epochs * number-of-dcuments.
    Each index is mapped to a corresponding document."""
430
431
432
433
434
435
436
437
438
439
440
    if not separate_last_epoch or num_epochs == 1:
        doc_idx = np.mgrid[0:num_epochs, 0:len(documents)][1]
        doc_idx[:] = documents
        doc_idx = doc_idx.reshape(-1)
        doc_idx = doc_idx.astype(np.int32)
        np_rng.shuffle(doc_idx)
        return doc_idx

    doc_idx_first = _build_doc_idx(documents, num_epochs-1, np_rng, False)
    doc_idx_last = _build_doc_idx(documents, 1, np_rng, False)
    return np.concatenate((doc_idx_first, doc_idx_last))
441
442
443
444
445
446


def _build_sample_idx(sizes, doc_idx, seq_length,
                      num_epochs, tokens_per_epoch):
    """Sample index mapping is a 2D array with sizes
    [number-of-samples + 1, 2] where [..., 0] contains
Mohammad's avatar
Mohammad committed
447
    the index into `doc_idx` and [..., 1] is the
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
    starting offset in that document."""

    # Total number of samples. For -1 see comments in `_num_epochs`.
    num_samples = (num_epochs * tokens_per_epoch - 1) // seq_length
    sample_idx = np.zeros([num_samples + 1, 2], dtype=np.int32)

    # Index into sample_idx.
    sample_index = 0
    # Index into doc_idx.
    doc_idx_index = 0
    # Begining offset for each document.
    doc_offset = 0
    # Start with first document and no offset.
    sample_idx[sample_index][0] = doc_idx_index
    sample_idx[sample_index][1] = doc_offset
    sample_index += 1
    while sample_index <= num_samples:
        # Start with a fresh sequence.
        remaining_seq_length = seq_length + 1
        while remaining_seq_length != 0:
            # Get the document length.
            doc_id = doc_idx[doc_idx_index]
            doc_length = sizes[doc_id] - doc_offset
            # And add it to the current sequence.
            remaining_seq_length -= doc_length
            # If we have more than a full sequence, adjust offset and set
            # remaining length to zero so we return from the while loop.
            # Note that -1 here is for the same reason we have -1 in
            # `_num_epochs` calculations.
            if remaining_seq_length <= 0:
                doc_offset += (remaining_seq_length + doc_length - 1)
                remaining_seq_length = 0
            else:
                # Otherwise, start from the begining of the next document.
                doc_idx_index += 1
                doc_offset = 0
        # Record the sequence.
        sample_idx[sample_index][0] = doc_idx_index
        sample_idx[sample_index][1] = doc_offset
        sample_index += 1

    return sample_idx


mshoeybi's avatar
mshoeybi committed
492
def _build_shuffle_idx(num_samples, total_size, np_rng):
493
    """Build the range [0, size) and shuffle."""
494
495
496
    print(' > building shuffle index with split [0, {}) and [{}, {}) '
          '...'.format(num_samples, num_samples, total_size), flush=True)
    
497
    dtype_ = np.uint32
498
    if total_size >= (np.iinfo(np.uint32).max - 1):
499
        dtype_ = np.int64
500
501
502
503
504
505
506
507
508
509
510
511

    shuffle_idx_first = np.arange(start=0, stop=num_samples,
                                  step=1, dtype=dtype_)
    np_rng.shuffle(shuffle_idx_first)
    if num_samples == total_size:
        return shuffle_idx_first

    shuffle_idx_last = np.arange(start=num_samples, stop=total_size,
                                 step=1, dtype=dtype_)
    np_rng.shuffle(shuffle_idx_last)

    return np.concatenate((shuffle_idx_first, shuffle_idx_last))