gpt_dataset.py 21.6 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
"""GPT style dataset."""
Mohammad's avatar
Mohammad committed
17

18
import os
19
import time
Mohammad's avatar
Mohammad committed
20

21
import numpy as np
22
23
import torch

24
from megatron import mpu, print_rank_0
mohammad's avatar
mohammad committed
25
26
from megatron.data.blendable_dataset import BlendableDataset
from megatron.data.dataset_utils import get_datasets_weights_and_num_samples
Neel Kant's avatar
Neel Kant committed
27
from megatron.data.dataset_utils import get_train_valid_test_split_
28
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
29
30


31
32
33
def build_train_valid_test_datasets(data_prefix, train_data_prefix, 
                                    valid_data_prefix, test_data_prefix, 
                                    data_impl, splits_string,
34
35
36
37
                                    train_valid_test_num_samples,
                                    seq_length, seed, skip_warmup):
    """Build train, valid, and test datasets."""

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    if data_prefix:
        print_rank_0("Single data path provided for train, valid & test")
        # Single dataset.
        if len(data_prefix) == 1:
            return _build_train_valid_test_datasets(data_prefix[0],
                                                    data_impl, splits_string,
                                                    train_valid_test_num_samples,
                                                    seq_length, seed, skip_warmup)

        # Blending dataset.
        # Parse the values.
        output = get_datasets_weights_and_num_samples(data_prefix,
                                                    train_valid_test_num_samples)
        prefixes, weights, datasets_train_valid_test_num_samples = output

        # Build individual datasets.
        train_datasets = []
        valid_datasets = []
        test_datasets = []
        for i in range(len(prefixes)):
            train_ds, valid_ds, test_ds = _build_train_valid_test_datasets(
                prefixes[i], data_impl, splits_string,
                datasets_train_valid_test_num_samples[i],
                seq_length, seed, skip_warmup)
            if train_ds:
                train_datasets.append(train_ds)
            if valid_ds:
                valid_datasets.append(valid_ds)
            if test_ds:
                test_datasets.append(test_ds)

        # Blend.
        blending_train_dataset = None
        if train_datasets:
            blending_train_dataset = BlendableDataset(train_datasets, weights)
        blending_valid_dataset = None
        if valid_datasets:
            blending_valid_dataset = BlendableDataset(valid_datasets, weights)
        blending_test_dataset = None
        if test_datasets:
            blending_test_dataset = BlendableDataset(test_datasets, weights)

        return (blending_train_dataset, blending_valid_dataset,
                blending_test_dataset)
    else:
        print_rank_0("Separate data paths provided for train, valid & test. Split string will be ignored.")
        assert (train_data_prefix is not None)
        train_dataset, valid_dataset, test_dataset = None, None, None
        # Single dataset.
        train_dataset = build_dataset("train", train_data_prefix, data_impl,
                                    train_valid_test_num_samples[0], seq_length, seed,
                                    skip_warmup)

        if valid_data_prefix is not None:
            valid_dataset = build_dataset("valid", valid_data_prefix, data_impl,
                                    train_valid_test_num_samples[1], seq_length, seed,
                                    False)

        if test_data_prefix is not None:
            test_dataset = build_dataset("test", test_data_prefix, data_impl,
                                    train_valid_test_num_samples[2], seq_length, seed,
                                    False)

        return (train_dataset, valid_dataset, test_dataset)


def build_dataset(dataset_name, data_prefix, data_impl, num_samples, seq_length, seed, skip_warmup):
    dataset = None
mohammad's avatar
mohammad committed
106
    if len(data_prefix) == 1:
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        dataset = _build_dataset(dataset_name,
                        data_prefix[0], data_impl,
                        num_samples, seq_length,
                        seed, skip_warmup)
    else:
        # Blending dataset.
        # Parse the values.
        output = get_datasets_weights_and_num_samples(data_prefix, num_samples)
        prefixes, weights, dataset_num_samples = output

        # Build individual datasets.
        datasets = []
        for i in range(len(prefixes)):
            ds = _build_dataset(dataset_name, prefixes[i],
                            data_impl, dataset_num_samples[i],
                            seq_length, seed, skip_warmup)
            if ds:
                datasets.append(ds)

        if datasets:
            dataset = BlendableDataset(datasets, weights)

    return dataset


def _build_dataset(dataset_name, data_prefix, data_impl,
                num_samples, seq_length, seed, skip_warmup):
    """
    Build dataset. This method is called when individual
    train, valid, test datasets are provided
    """

    # Indexed dataset.
    indexed_dataset = get_indexed_dataset_(data_prefix,
                                           data_impl,
                                           skip_warmup)

    total_num_of_documents = indexed_dataset.sizes.shape[0]

    print_rank_0('    {}:'.format(dataset_name))
    print_rank_0('     document indices in [0, {}) total of {} '
                 'documents'.format(total_num_of_documents, total_num_of_documents))

    documents = np.arange(start=0, stop=total_num_of_documents,
                        step=1, dtype=np.int32)

    dataset = GPTDataset(dataset_name, data_prefix,
                        documents, indexed_dataset,
                        num_samples, seq_length, seed)

    return dataset
mohammad's avatar
mohammad committed
158
159
160
161
162


def _build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
                                     train_valid_test_num_samples,
                                     seq_length, seed, skip_warmup):
163
164
165
166
167
168
169
170
171
172
173
174
    """Build train, valid, and test datasets."""

    # Indexed dataset.
    indexed_dataset = get_indexed_dataset_(data_prefix,
                                           data_impl,
                                           skip_warmup)

    total_num_of_documents = indexed_dataset.sizes.shape[0]
    splits = get_train_valid_test_split_(splits_string, total_num_of_documents)

    # Print stats about the splits.
    print_rank_0(' > dataset split:')
Neel Kant's avatar
Neel Kant committed
175

176
177
178
179
180
181
182
183
184
185
186
187
    def print_split_stats(name, index):
        print_rank_0('    {}:'.format(name))
        print_rank_0('     document indices in [{}, {}) total of {} '
                     'documents'.format(splits[index], splits[index + 1],
                                        splits[index + 1] - splits[index]))
    print_split_stats('train', 0)
    print_split_stats('validation', 1)
    print_split_stats('test', 2)

    def build_dataset(index, name):
        dataset = None
        if splits[index + 1] > splits[index]:
Neel Kant's avatar
Neel Kant committed
188
            documents = np.arange(start=splits[index], stop=splits[index + 1],
189
                                  step=1, dtype=np.int32)
190
            dataset = GPTDataset(name, data_prefix,
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
                                  documents, indexed_dataset,
                                  train_valid_test_num_samples[index],
                                  seq_length, seed)
        return dataset

    train_dataset = build_dataset(0, 'train')
    valid_dataset = build_dataset(1, 'valid')
    test_dataset = build_dataset(2, 'test')

    return (train_dataset, valid_dataset, test_dataset)


def get_indexed_dataset_(data_prefix, data_impl, skip_warmup):
    """Build indexed dataset."""
    print_rank_0(' > building dataset index ...')

    start_time = time.time()
    indexed_dataset = make_indexed_dataset(data_prefix,
                                           data_impl,
                                           skip_warmup)
    print_rank_0(' > finished creating indexed dataset in {:4f} '
                 'seconds'.format(time.time() - start_time))
    print_rank_0('    number of documents: {}'.format(
        indexed_dataset.sizes.shape[0]))

    return indexed_dataset


219
class GPTDataset(torch.utils.data.Dataset):
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

    def __init__(self, name, data_prefix, documents, indexed_dataset,
                 num_samples, seq_length, seed):

        self.name = name
        self.indexed_dataset = indexed_dataset

        # Checks
        assert np.min(documents) >= 0
        assert np.max(documents) < indexed_dataset.sizes.shape[0]

        # Build index mappings.
        self.doc_idx, self.sample_idx, self.shuffle_idx = _build_index_mappings(
            self.name, data_prefix, documents, self.indexed_dataset.sizes,
            num_samples, seq_length, seed)

236
    def __len__(self):
237
238
239
        # -1 is due to data structure used to retieve the index:
        #    sample i --> [sample_idx[i], sample_idx[i+1])
        return self.sample_idx.shape[0] - 1
240

241
    def __getitem__(self, idx):
242
243
244
245
        # Get the shuffled index.
        idx = self.shuffle_idx[idx]
        # Start and end documents and offsets.
        doc_index_f = self.sample_idx[idx][0]
Neel Kant's avatar
Neel Kant committed
246
        doc_index_l = self.sample_idx[idx + 1][0]
247
        offset_f = self.sample_idx[idx][1]
Neel Kant's avatar
Neel Kant committed
248
        offset_l = self.sample_idx[idx + 1][1]
249
250
251
252
253
254
255
256
257
258
        # If we are within the same document, just extract the chunk.
        if doc_index_f == doc_index_l:
            sample = self.indexed_dataset.get(self.doc_idx[doc_index_f],
                                              offset=offset_f,
                                              length=offset_l - offset_f + 1)
        else:
            # Otherwise, get the rest of the initial document.
            sample_list = [self.indexed_dataset.get(self.doc_idx[doc_index_f],
                                                    offset=offset_f)]
            # Loop over all in between documents and add the entire document.
Neel Kant's avatar
Neel Kant committed
259
            for i in range(doc_index_f + 1, doc_index_l):
260
261
262
263
                sample_list.append(self.indexed_dataset.get(self.doc_idx[i]))
            # And finally add the relevant portion of last document.
            sample_list.append(self.indexed_dataset.get(
                self.doc_idx[doc_index_l],
Neel Kant's avatar
Neel Kant committed
264
                length=offset_l + 1))
265
266
267
268
269
270
271
            sample = np.concatenate(sample_list)

        return {'text': np.array(sample, dtype=np.int64)}


def _build_index_mappings(name, data_prefix, documents, sizes,
                          num_samples, seq_length, seed):
272
273
274
275
276
277
    """Build doc-idx, sample-idx, and shuffle-idx.
    doc-idx: is an array (ordered) of documents to be used in training.
    sample-idx: is the start document index and document offset for each
       training sample.
    shuffle-idx: maps the sample index into a random index into sample-idx.
    """
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    # Number of tokens in each epoch and number of required epochs.
    tokens_per_epoch = _num_tokens(documents, sizes)
    num_epochs = _num_epochs(tokens_per_epoch, seq_length, num_samples)
    # rng state
    np_rng = np.random.RandomState(seed=seed)

    # Filename of the index mappings.
    _filename = data_prefix
    _filename += '_{}_indexmap'.format(name)
    _filename += '_{}ns'.format(num_samples)
    _filename += '_{}sl'.format(seq_length)
    _filename += '_{}s'.format(seed)
    doc_idx_filename = _filename + '_doc_idx.npy'
    sample_idx_filename = _filename + '_sample_idx.npy'
    shuffle_idx_filename = _filename + '_shuffle_idx.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0:
        if (not os.path.isfile(doc_idx_filename)) or \
           (not os.path.isfile(sample_idx_filename)) or \
           (not os.path.isfile(shuffle_idx_filename)):

            print_rank_0(' > WARNING: could not find index map files, building '
                         'the indices on rank 0 ...')
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

            # For the last epoch, decide whether include the entire epoch
            # in the global shuffle or not.

            # If we need only one epoch, then separating last epoch  does
            # not mean anything.
            if num_epochs == 1:
                separate_last_epoch = False
                print(' > only one epoch required, setting '
                      'separate_last_epoch to False', flush=True)

            else:
                # Get the number of samples for the last epoch
                num_samples_from_epochs_minus_one = (
                    (num_epochs - 1) * tokens_per_epoch - 1) // seq_length
                last_epoch_num_samples = num_samples - \
                                         num_samples_from_epochs_minus_one
                assert last_epoch_num_samples >= 0, \
                    'last epoch number of samples should be non-negative.'
                num_samples_per_epoch = (tokens_per_epoch - 1) // seq_length
                assert last_epoch_num_samples < (num_samples_per_epoch + 1), \
                    'last epoch number of samples exceeded max value.'
                # If we have less than 80% of the samples for the last epoch,
                # seperate out the epoch and treat it differently.
326
327
                # Note: the 80% number is just based on common sense and can
                # be adjusted if needed.
328
329
330
331
332
333
334
335
336
337
338
339
340
                separate_last_epoch = (last_epoch_num_samples <
                                       int(0.80 * num_samples_per_epoch))
                if separate_last_epoch:
                    string = ' > last epoch number of samples ({}) is smaller '\
                             'than 80% of number of samples per epoch ({}), '\
                             'setting separate_last_epoch to True'
                else:
                    string = ' > last epoch number of samples ({}) is larger '\
                             'than 80% of number of samples per epoch ({}), '\
                             'setting separate_last_epoch to False'
                print(string.format(last_epoch_num_samples,
                                    num_samples_per_epoch), flush=True)

341
342
            # doc-idx.
            start_time = time.time()
343
344
            doc_idx = _build_doc_idx(documents, num_epochs, np_rng,
                                     separate_last_epoch)
345
346
347
348
349
350
            np.save(doc_idx_filename, doc_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save doc-idx mapping '
                         '(seconds): {:4f}'.format(time.time() - start_time))
            # sample-idx.
            start_time = time.time()
            # Use C++ implementation for speed.
351
            # First compile and then import.
352
353
354
355
356
            from megatron.data import helpers
            assert doc_idx.dtype == np.int32
            assert sizes.dtype == np.int32
            sample_idx = helpers.build_sample_idx(sizes, doc_idx, seq_length,
                                                  num_epochs, tokens_per_epoch)
Neel Kant's avatar
Neel Kant committed
357
            # sample_idx = _build_sample_idx(sizes, doc_idx, seq_length,
358
359
360
361
362
363
            #                               num_epochs, tokens_per_epoch)
            np.save(sample_idx_filename, sample_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save sample-idx mapping '
                         '(seconds): {:4f}'.format(time.time() - start_time))
            # shuffle-idx.
            start_time = time.time()
364
365
            # -1 is due to data structure used to retieve the index:
            #    sample i --> [sample_idx[i], sample_idx[i+1])
366
367
368
369
370
371
            if separate_last_epoch:
                num_samples_ = num_samples_from_epochs_minus_one
            else:
                num_samples_ = sample_idx.shape[0] - 1
            shuffle_idx = _build_shuffle_idx(num_samples_,
                                             sample_idx.shape[0] - 1, np_rng)
372
373
374
375
376
377
378
379
380
            np.save(shuffle_idx_filename, shuffle_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save shuffle-idx mapping'
                         ' (seconds): {:4f}'.format(time.time() - start_time))

    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
381
    torch.distributed.all_reduce(counts, group=mpu.get_pipeline_model_parallel_group())
382
383
    assert counts[0].item() == (
        torch.distributed.get_world_size() //
384
        torch.distributed.get_world_size(group=mpu.get_tensor_model_parallel_group()))
385
386
387
388
389

    # Load mappings.
    start_time = time.time()
    print_rank_0(' > loading doc-idx mapping from {}'.format(
        doc_idx_filename))
Raul Puri's avatar
Raul Puri committed
390
    doc_idx = np.load(doc_idx_filename, allow_pickle=True, mmap_mode='r')
391
392
    print_rank_0(' > loading sample-idx mapping from {}'.format(
        sample_idx_filename))
Raul Puri's avatar
Raul Puri committed
393
    sample_idx = np.load(sample_idx_filename, allow_pickle=True, mmap_mode='r')
394
395
    print_rank_0(' > loading shuffle-idx mapping from {}'.format(
        shuffle_idx_filename))
Raul Puri's avatar
Raul Puri committed
396
    shuffle_idx = np.load(shuffle_idx_filename, allow_pickle=True, mmap_mode='r')
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('    total number of samples: {}'.format(
        sample_idx.shape[0]))
    print_rank_0('    total number of epochs: {}'.format(num_epochs))

    return doc_idx, sample_idx, shuffle_idx


def _num_tokens(documents, sizes):
    """Total number of tokens in the dataset."""
    return np.sum(sizes[documents])


def _num_epochs(tokens_per_epoch, seq_length, num_samples):
    """Based on number of samples and sequence lenght, calculate how many
    epochs will be needed."""
    num_epochs = 0
    total_tokens = 0
    while True:
        num_epochs += 1
        total_tokens += tokens_per_epoch
        # -1 is because we need to retrieve seq_length + 1 token each time
        # but the last token will overlap with the first token of the next
        # sample except for the last sample.
        if ((total_tokens - 1) // seq_length) >= num_samples:
            return num_epochs


426
def _build_doc_idx(documents, num_epochs, np_rng, separate_last_epoch):
427
428
    """Build an array with length = number-of-epochs * number-of-dcuments.
    Each index is mapped to a corresponding document."""
429
430
431
432
433
434
435
436
437
438
439
    if not separate_last_epoch or num_epochs == 1:
        doc_idx = np.mgrid[0:num_epochs, 0:len(documents)][1]
        doc_idx[:] = documents
        doc_idx = doc_idx.reshape(-1)
        doc_idx = doc_idx.astype(np.int32)
        np_rng.shuffle(doc_idx)
        return doc_idx

    doc_idx_first = _build_doc_idx(documents, num_epochs-1, np_rng, False)
    doc_idx_last = _build_doc_idx(documents, 1, np_rng, False)
    return np.concatenate((doc_idx_first, doc_idx_last))
440
441
442
443
444
445


def _build_sample_idx(sizes, doc_idx, seq_length,
                      num_epochs, tokens_per_epoch):
    """Sample index mapping is a 2D array with sizes
    [number-of-samples + 1, 2] where [..., 0] contains
Mohammad's avatar
Mohammad committed
446
    the index into `doc_idx` and [..., 1] is the
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    starting offset in that document."""

    # Total number of samples. For -1 see comments in `_num_epochs`.
    num_samples = (num_epochs * tokens_per_epoch - 1) // seq_length
    sample_idx = np.zeros([num_samples + 1, 2], dtype=np.int32)

    # Index into sample_idx.
    sample_index = 0
    # Index into doc_idx.
    doc_idx_index = 0
    # Begining offset for each document.
    doc_offset = 0
    # Start with first document and no offset.
    sample_idx[sample_index][0] = doc_idx_index
    sample_idx[sample_index][1] = doc_offset
    sample_index += 1
    while sample_index <= num_samples:
        # Start with a fresh sequence.
        remaining_seq_length = seq_length + 1
        while remaining_seq_length != 0:
            # Get the document length.
            doc_id = doc_idx[doc_idx_index]
            doc_length = sizes[doc_id] - doc_offset
            # And add it to the current sequence.
            remaining_seq_length -= doc_length
            # If we have more than a full sequence, adjust offset and set
            # remaining length to zero so we return from the while loop.
            # Note that -1 here is for the same reason we have -1 in
            # `_num_epochs` calculations.
            if remaining_seq_length <= 0:
                doc_offset += (remaining_seq_length + doc_length - 1)
                remaining_seq_length = 0
            else:
                # Otherwise, start from the begining of the next document.
                doc_idx_index += 1
                doc_offset = 0
        # Record the sequence.
        sample_idx[sample_index][0] = doc_idx_index
        sample_idx[sample_index][1] = doc_offset
        sample_index += 1

    return sample_idx


mshoeybi's avatar
mshoeybi committed
491
def _build_shuffle_idx(num_samples, total_size, np_rng):
492
    """Build the range [0, size) and shuffle."""
493
494
495
    print(' > building shuffle index with split [0, {}) and [{}, {}) '
          '...'.format(num_samples, num_samples, total_size), flush=True)
    
496
    dtype_ = np.uint32
497
    if total_size >= (np.iinfo(np.uint32).max - 1):
498
        dtype_ = np.int64
499
500
501
502
503
504
505
506
507
508
509
510

    shuffle_idx_first = np.arange(start=0, stop=num_samples,
                                  step=1, dtype=dtype_)
    np_rng.shuffle(shuffle_idx_first)
    if num_samples == total_size:
        return shuffle_idx_first

    shuffle_idx_last = np.arange(start=num_samples, stop=total_size,
                                 step=1, dtype=dtype_)
    np_rng.shuffle(shuffle_idx_last)

    return np.concatenate((shuffle_idx_first, shuffle_idx_last))