indexed_dataset.py 17.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


# copied from fairseq/fairseq/data/indexed_dataset.py
# Removed IndexedRawTextDataset since it relied on Fairseq dictionary
# other slight modifications to remove fairseq dependencies
10
11
# Added document index to index file and made it accessible.
#    An empty sentence no longer separates documents.
12
13
14
15
16

from functools import lru_cache
import os
import shutil
import struct
17
from itertools import accumulate
18
19
20

import numpy as np
import torch
21
from megatron import print_rank_0
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

def __best_fitting_dtype(vocab_size=None):
    if vocab_size is not None and vocab_size < 65500:
        return np.uint16
    else:
        return np.int32


def get_available_dataset_impl():
    return ['lazy', 'cached', 'mmap']


def infer_dataset_impl(path):
    if IndexedDataset.exists(path):
        with open(index_file_path(path), 'rb') as f:
            magic = f.read(8)
            if magic == IndexedDataset._HDR_MAGIC:
                return 'cached'
            elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]:
                return 'mmap'
            else:
                return None
    else:
        return None


def make_builder(out_file, impl, vocab_size=None):
    if impl == 'mmap':
        return MMapIndexedDatasetBuilder(out_file, dtype=__best_fitting_dtype(vocab_size))
    else:
        return IndexedDatasetBuilder(out_file)


55
56
57
def make_dataset(path, impl, skip_warmup=False):
    if impl == 'infer':
        impl = infer_dataset_impl(path)
58
    if impl == 'lazy' and IndexedDataset.exists(path):
59
        return IndexedDataset(path)
60
    elif impl == 'cached' and IndexedDataset.exists(path):
61
        return IndexedCachedDataset(path)
62
    elif impl == 'mmap' and MMapIndexedDataset.exists(path):
63
        return MMapIndexedDataset(path, skip_warmup)
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    return None


def dataset_exists(path, impl):
    if impl == 'mmap':
        return MMapIndexedDataset.exists(path)
    else:
        return IndexedDataset.exists(path)


def read_longs(f, n):
    a = np.empty(n, dtype=np.int64)
    f.readinto(a)
    return a


def write_longs(f, a):
    f.write(np.array(a, dtype=np.int64))


dtypes = {
    1: np.uint8,
    2: np.int8,
    3: np.int16,
    4: np.int32,
    5: np.int64,
    6: np.float,
    7: np.double,
    8: np.uint16
}


def code(dtype):
    for k in dtypes.keys():
        if dtypes[k] == dtype:
            return k
    raise ValueError(dtype)


def index_file_path(prefix_path):
    return prefix_path + '.idx'


def data_file_path(prefix_path):
    return prefix_path + '.bin'

110
111
112
113
114
115
def create_doc_idx(sizes):
    doc_idx = [0]
    for i, s in enumerate(sizes):
        if s == 0:
            doc_idx.append(i+1)
    return doc_idx
116
117
118
119
120

class IndexedDataset(torch.utils.data.Dataset):
    """Loader for IndexedDataset"""
    _HDR_MAGIC = b'TNTIDX\x00\x00'

121
    def __init__(self, path):
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        super().__init__()
        self.path = path
        self.data_file = None
        self.read_index(path)

    def read_index(self, path):
        with open(index_file_path(path), 'rb') as f:
            magic = f.read(8)
            assert magic == self._HDR_MAGIC, (
                'Index file doesn\'t match expected format. '
                'Make sure that --dataset-impl is configured properly.'
            )
            version = f.read(8)
            assert struct.unpack('<Q', version) == (1,)
            code, self.element_size = struct.unpack('<QQ', f.read(16))
            self.dtype = dtypes[code]
            self._len, self.s = struct.unpack('<QQ', f.read(16))
139
            self.doc_count = struct.unpack('<Q', f.read(8))
140
141
142
            self.dim_offsets = read_longs(f, self._len + 1)
            self.data_offsets = read_longs(f, self._len + 1)
            self.sizes = read_longs(f, self.s)
143
            self.doc_idx = read_longs(f, self.doc_count)
144
145
146
147
148
149
150
151
152
153
154
155

    def read_data(self, path):
        self.data_file = open(data_file_path(path), 'rb', buffering=0)

    def check_index(self, i):
        if i < 0 or i >= self._len:
            raise IndexError('index out of range')

    def __del__(self):
        if self.data_file:
            self.data_file.close()

156
157
    #@lru_cache(maxsize=8)
    def __getitem__(self, idx):
158
159
        if not self.data_file:
            self.read_data(self.path)
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        if isinstance(idx, int):
            i = idx
            self.check_index(i)
            tensor_size = self.sizes[self.dim_offsets[i]:self.dim_offsets[i + 1]]
            a = np.empty(tensor_size, dtype=self.dtype)
            self.data_file.seek(self.data_offsets[i] * self.element_size)
            self.data_file.readinto(a)
            return a
        elif isinstance(idx, slice):
            start, stop, step = idx.indices(len(self))
            if step != 1:
                raise ValueError("Slices into indexed_dataset must be contiguous")
            sizes = self.sizes[self.dim_offsets[start]:self.dim_offsets[stop]]
            size = sum(sizes)
            a = np.empty(size, dtype=self.dtype)
            self.data_file.seek(self.data_offsets[start] * self.element_size)
            self.data_file.readinto(a)
            offsets = list(accumulate(sizes))
            sents = np.split(a, offsets[:-1])
            return sents
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

    def __len__(self):
        return self._len

    def num_tokens(self, index):
        return self.sizes[index]

    def size(self, index):
        return self.sizes[index]

    @staticmethod
    def exists(path):
        return (
            os.path.exists(index_file_path(path)) and os.path.exists(data_file_path(path))
        )

    @property
    def supports_prefetch(self):
        return False  # avoid prefetching to save memory


class IndexedCachedDataset(IndexedDataset):

203
204
    def __init__(self, path):
        super().__init__(path)
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        self.cache = None
        self.cache_index = {}

    @property
    def supports_prefetch(self):
        return True

    def prefetch(self, indices):
        if all(i in self.cache_index for i in indices):
            return
        if not self.data_file:
            self.read_data(self.path)
        indices = sorted(set(indices))
        total_size = 0
        for i in indices:
            total_size += self.data_offsets[i + 1] - self.data_offsets[i]
        self.cache = np.empty(total_size, dtype=self.dtype)
        ptx = 0
        self.cache_index.clear()
        for i in indices:
            self.cache_index[i] = ptx
            size = self.data_offsets[i + 1] - self.data_offsets[i]
            a = self.cache[ptx: ptx + size]
            self.data_file.seek(self.data_offsets[i] * self.element_size)
            self.data_file.readinto(a)
            ptx += size
        if self.data_file:
            # close and delete data file after prefetch so we can pickle
            self.data_file.close()
            self.data_file = None

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    #@lru_cache(maxsize=8)
    def __getitem__(self, idx):
        if isinstance(idx, int):
            i = idx
            self.check_index(i)
            tensor_size = self.sizes[self.dim_offsets[i]:self.dim_offsets[i + 1]]
            a = np.empty(tensor_size, dtype=self.dtype)
            ptx = self.cache_index[i]
            np.copyto(a, self.cache[ptx: ptx + a.size])
            return a
        elif isinstance(idx, slice):
            # Hack just to make this work, can optimizer later if necessary
            sents = []
            for i in range(*idx.indices(len(self))):
                sents.append(self[i])
            return sents
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271


class IndexedDatasetBuilder(object):
    element_sizes = {
        np.uint8: 1,
        np.int8: 1,
        np.int16: 2,
        np.int32: 4,
        np.int64: 8,
        np.float: 4,
        np.double: 8
    }

    def __init__(self, out_file, dtype=np.int32):
        self.out_file = open(out_file, 'wb')
        self.dtype = dtype
        self.data_offsets = [0]
        self.dim_offsets = [0]
        self.sizes = []
        self.element_size = self.element_sizes[self.dtype]
272
        self.doc_idx = [0]
273
274

    def add_item(self, tensor):
275
        bytes = self.out_file.write(np.array(tensor.numpy(), dtype=self.dtype))
276
277
278
279
280
        self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size)
        for s in tensor.size():
            self.sizes.append(s)
        self.dim_offsets.append(self.dim_offsets[-1] + len(tensor.size()))

281
282
283
    def end_document(self):
        self.doc_idx.append(len(self.sizes))

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    def merge_file_(self, another_file):
        index = IndexedDataset(another_file)
        assert index.dtype == self.dtype

        begin = self.data_offsets[-1]
        for offset in index.data_offsets[1:]:
            self.data_offsets.append(begin + offset)
        self.sizes.extend(index.sizes)
        begin = self.dim_offsets[-1]
        for dim_offset in index.dim_offsets[1:]:
            self.dim_offsets.append(begin + dim_offset)

        with open(data_file_path(another_file), 'rb') as f:
            while True:
                data = f.read(1024)
                if data:
                    self.out_file.write(data)
                else:
                    break

    def finalize(self, index_file):
        self.out_file.close()
        index = open(index_file, 'wb')
        index.write(b'TNTIDX\x00\x00')
        index.write(struct.pack('<Q', 1))
        index.write(struct.pack('<QQ', code(self.dtype), self.element_size))
        index.write(struct.pack('<QQ', len(self.data_offsets) - 1, len(self.sizes)))
311
        index.write(struct.pack('<Q', len(self.doc_idx)))
312
313
314
        write_longs(index, self.dim_offsets)
        write_longs(index, self.data_offsets)
        write_longs(index, self.sizes)
315
        write_longs(index, self.doc_idx)
316
317
318
319
320
        index.close()


def _warmup_mmap_file(path):
    with open(path, 'rb') as stream:
321
        while stream.read(100 * 1024 * 1024):
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
            pass


class MMapIndexedDataset(torch.utils.data.Dataset):
    class Index(object):
        _HDR_MAGIC = b'MMIDIDX\x00\x00'

        @classmethod
        def writer(cls, path, dtype):
            class _Writer(object):
                def __enter__(self):
                    self._file = open(path, 'wb')

                    self._file.write(cls._HDR_MAGIC)
                    self._file.write(struct.pack('<Q', 1))
                    self._file.write(struct.pack('<B', code(dtype)))

                    return self

                @staticmethod
                def _get_pointers(sizes):
                    dtype_size = dtype().itemsize
                    address = 0
                    pointers = []

                    for size in sizes:
                        pointers.append(address)
                        address += size * dtype_size

                    return pointers

353
                def write(self, sizes, doc_idx):
354
355
356
                    pointers = self._get_pointers(sizes)

                    self._file.write(struct.pack('<Q', len(sizes)))
357
                    self._file.write(struct.pack('<Q', len(doc_idx)))
358
359
360
361
362
363
364
365
366

                    sizes = np.array(sizes, dtype=np.int32)
                    self._file.write(sizes.tobytes(order='C'))
                    del sizes

                    pointers = np.array(pointers, dtype=np.int64)
                    self._file.write(pointers.tobytes(order='C'))
                    del pointers

367
368
369
                    doc_idx = np.array(doc_idx, dtype=np.int64)
                    self._file.write(doc_idx.tobytes(order='C'))

370
371
372
373
374
                def __exit__(self, exc_type, exc_val, exc_tb):
                    self._file.close()

            return _Writer()

375
        def __init__(self, path, skip_warmup=False):
376
377
378
379
380
381
382
383
384
385
386
387
388
389
            with open(path, 'rb') as stream:
                magic_test = stream.read(9)
                assert self._HDR_MAGIC == magic_test, (
                    'Index file doesn\'t match expected format. '
                    'Make sure that --dataset-impl is configured properly.'
                )
                version = struct.unpack('<Q', stream.read(8))
                assert (1,) == version

                dtype_code, = struct.unpack('<B', stream.read(1))
                self._dtype = dtypes[dtype_code]
                self._dtype_size = self._dtype().itemsize

                self._len = struct.unpack('<Q', stream.read(8))[0]
390
                self._doc_count = struct.unpack('<Q', stream.read(8))[0]
391
392
                offset = stream.tell()

393
            if not skip_warmup:
394
                print_rank_0("    warming up index mmap file...")
395
                _warmup_mmap_file(path)
396
397
398

            self._bin_buffer_mmap = np.memmap(path, mode='r', order='C')
            self._bin_buffer = memoryview(self._bin_buffer_mmap)
399
            print_rank_0("    reading sizes...")
400
            self._sizes = np.frombuffer(self._bin_buffer, dtype=np.int32, count=self._len, offset=offset)
401
            print_rank_0("    reading pointers...")
402
403
            self._pointers = np.frombuffer(self._bin_buffer, dtype=np.int64, count=self._len,
                                           offset=offset + self._sizes.nbytes)
404
            print_rank_0("    reading document index...")
405
406
            self._doc_idx = np.frombuffer(self._bin_buffer, dtype=np.int64, count=self._doc_count,
                                          offset=offset + self._sizes.nbytes + self._pointers.nbytes)
407
408
409
410
411
412
413
414
415
416
417
418
        def __del__(self):
            self._bin_buffer_mmap._mmap.close()
            del self._bin_buffer_mmap

        @property
        def dtype(self):
            return self._dtype

        @property
        def sizes(self):
            return self._sizes

419
420
421
422
        @property
        def doc_idx(self):
            return self._doc_idx

423
424
425
426
427
428
429
        @lru_cache(maxsize=8)
        def __getitem__(self, i):
            return self._pointers[i], self._sizes[i]

        def __len__(self):
            return self._len

430
    def __init__(self, path, skip_warmup=False):
431
432
433
434
435
436
        super().__init__()

        self._path = None
        self._index = None
        self._bin_buffer = None

437
        self._do_init(path, skip_warmup)
438
439
440
441
442
443
444

    def __getstate__(self):
        return self._path

    def __setstate__(self, state):
        self._do_init(state)

445
    def _do_init(self, path, skip_warmup):
446
        self._path = path
447
        self._index = self.Index(index_file_path(self._path), skip_warmup)
448

449
        if not skip_warmup:
450
            print_rank_0("    warming up data mmap file...")
451
            _warmup_mmap_file(data_file_path(self._path))
452
        print_rank_0("    creating numpy buffer of mmap...")
453
        self._bin_buffer_mmap = np.memmap(data_file_path(self._path), mode='r', order='C')
454
        print_rank_0("    creating memory view of numpy buffer...")
455
456
457
458
459
460
461
462
463
464
        self._bin_buffer = memoryview(self._bin_buffer_mmap)

    def __del__(self):
        self._bin_buffer_mmap._mmap.close()
        del self._bin_buffer_mmap
        del self._index

    def __len__(self):
        return len(self._index)

465
466
467
468
469
470
471
    #@lru_cache(maxsize=8)
    def __getitem__(self, idx):
        if isinstance(idx, int):
            ptr, size = self._index[idx]
            np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr)
            if self._index.dtype != np.int64:
                np_array = np_array.astype(np.int64)
472
            return np_array
473
474
475
476
477
478
479
480
481
482
483
        elif isinstance(idx, slice):
            start, stop, step = idx.indices(len(self))
            if step != 1:
                raise ValueError("Slices into indexed_dataset must be contiguous")
            ptr = self._index._pointers[start]
            sizes = self._index._sizes[idx]
            offsets = list(accumulate(sizes))
            total_size = sum(sizes)
            np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype, count=total_size, offset=ptr)
            sents = np.split(np_array, offsets[:-1])
            return sents
484
485
486
487
488

    @property
    def sizes(self):
        return self._index.sizes

489
490
491
492
    @property
    def doc_idx(self):
        return self._index.doc_idx

493
494
495
496
497
498
    def get_doc_idx(self):
        return self._index._doc_idx

    def set_doc_idx(self, doc_idx_):
        self._index._doc_idx = doc_idx_

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    @property
    def supports_prefetch(self):
        return False

    @staticmethod
    def exists(path):
        return (
            os.path.exists(index_file_path(path)) and os.path.exists(data_file_path(path))
        )


class MMapIndexedDatasetBuilder(object):
    def __init__(self, out_file, dtype=np.int64):
        self._data_file = open(out_file, 'wb')
        self._dtype = dtype
        self._sizes = []
515
        self._doc_idx = [0]
516
517
518
519
520
521

    def add_item(self, tensor):
        np_array = np.array(tensor.numpy(), dtype=self._dtype)
        self._data_file.write(np_array.tobytes(order='C'))
        self._sizes.append(np_array.size)

522
523
524
    def end_document(self):
        self._doc_idx.append(len(self._sizes))

525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    def merge_file_(self, another_file):
        # Concatenate index
        index = MMapIndexedDataset.Index(index_file_path(another_file))
        assert index.dtype == self._dtype

        for size in index.sizes:
            self._sizes.append(size)

        # Concatenate data
        with open(data_file_path(another_file), 'rb') as f:
            shutil.copyfileobj(f, self._data_file)

    def finalize(self, index_file):
        self._data_file.close()

        with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index:
541
            index.write(self._sizes, self._doc_idx)