import numpy as np import torch from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP from megatron import get_args from megatron import mpu from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name from megatron.data.bert_dataset import get_indexed_dataset_ from megatron.data.ict_dataset import InverseClozeDataset from megatron.data.samplers import DistributedBatchSampler from megatron.initialize import initialize_megatron from megatron.training import get_model from pretrain_bert_ict import get_batch, model_provider def main(): initialize_megatron(extra_args_provider=None, args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'}) args = get_args() model = load_checkpoint() model.eval() dataset = get_dataset() data_iter = iter(get_dataloader(dataset)) all_input_tokens = [] all_input_logits = [] all_doc_tokens = [] all_doc_logits = [] for i in range(100): input_tokens, input_types, input_pad_mask, doc_tokens, doc_token_types, doc_pad_mask = get_batch(data_iter) input_logits, doc_logits, _ = model.module.module.forward( input_tokens, input_types, input_pad_mask, doc_tokens, doc_pad_mask, doc_token_types, return_logits=True) all_input_tokens.append(input_tokens.detach().cpu().numpy()) all_input_logits.append(input_logits.detach().cpu().numpy()) all_doc_tokens.append(doc_tokens.detach().cpu().numpy()) all_doc_logits.append(doc_logits.detach().cpu().numpy()) all_inputs_tokens = np.array(all_input_tokens).reshape(-1, args.seq_length) all_inputs_logits = np.array(all_input_logits).reshape(-1, 128) all_doc_tokens = np.array(all_doc_tokens).reshape(-1, args.seq_length) all_doc_logits = np.array(all_doc_logits).reshape(-1, 128) np.save('input_tokens.npy', all_input_tokens) np.save('input_logits.npy', all_input_logits) np.save('doc_tokens.npy', all_doc_tokens) np.save('doc_logits.npy', all_doc_logits) def load_checkpoint(): args = get_args() model = get_model(model_provider) if isinstance(model, torchDDP): model = model.module tracker_filename = get_checkpoint_tracker_filename(args.load) with open(tracker_filename, 'r') as f: iteration = int(f.read().strip()) assert iteration > 0 checkpoint_name = get_checkpoint_name(args.load, iteration, False) if mpu.get_data_parallel_rank() == 0: print('global rank {} is loading checkpoint {}'.format( torch.distributed.get_rank(), checkpoint_name)) state_dict = torch.load(checkpoint_name, map_location='cpu') model.load_state_dict(state_dict['model']) torch.distributed.barrier() if mpu.get_data_parallel_rank() == 0: print(' successfully loaded {}'.format(checkpoint_name)) return model def get_dataset(): args = get_args() indexed_dataset = get_indexed_dataset_(args.data_path, 'mmap', True) doc_idx_ptr = indexed_dataset.get_doc_idx() total_num_documents = indexed_dataset.doc_idx.shape[0] - 1 indexed_dataset.set_doc_idx(doc_idx_ptr[0:total_num_documents]) kwargs = dict( name='full', indexed_dataset=indexed_dataset, data_prefix=args.data_path, num_epochs=None, max_num_samples=total_num_documents, max_seq_length=288, # doesn't matter short_seq_prob=0.0001, # doesn't matter seed=1 ) dataset = InverseClozeDataset(**kwargs) return dataset def get_dataloader(dataset): args = get_args() world_size = mpu.get_data_parallel_world_size() rank = mpu.get_data_parallel_rank() global_batch_size = args.batch_size * world_size num_workers = args.num_workers sampler = torch.utils.data.SequentialSampler(dataset) batch_sampler = DistributedBatchSampler(sampler, batch_size=global_batch_size, drop_last=True, rank=rank, world_size=world_size) return torch.utils.data.DataLoader(dataset, batch_sampler=batch_sampler, num_workers=num_workers, pin_memory=True) if __name__ == "__main__": main()