"tools/training-benchmark-with-aevcache.py" did not exist on "d07bd02c05111254aab361200d947d4de1e70c4d"
generate_samples_gpt2.py 3.74 KB
Newer Older
Mohammad's avatar
Mohammad committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Sample Generate GPT2"""

Mohammad's avatar
Mohammad committed
18
19
20
21
22
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
                                             os.path.pardir)))

Mohammad's avatar
Mohammad committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from megatron import get_args
from megatron import get_tokenizer
from megatron import print_rank_0
from megatron.checkpointing import load_checkpoint
from megatron.initialize import initialize_megatron
from megatron.model import GPT2Model
from megatron.training import get_model
from megatron.text_generation_utils import generate_and_write_samples_unconditional
from megatron.text_generation_utils import generate_samples_input_from_file
from megatron.text_generation_utils import generate_samples_interactive


def model_provider():
    """Build the model."""

    print_rank_0('building GPT2 model ...')
    model = GPT2Model(num_tokentypes=0, parallel_output=False)

    return model


def add_text_generate_args(parser):
    """Text generation arguments."""
    group = parser.add_argument_group(title='text generation')

    group.add_argument("--temperature", type=float, default=1.0,
                       help='Sampling temperature.')
    group.add_argument("--greedy", action='store_true', default=False,
                       help='Use greedy sampling.')
    group.add_argument("--top_p", type=float, default=0.0,
                       help='Top p sampling.')
    group.add_argument("--top_k", type=int, default=0,
                       help='Top k sampling.')
    group.add_argument("--out-seq-length", type=int, default=1024,
                       help='Size of the output generated text.')
    group.add_argument("--sample-input-file", type=str, default=None,
                       help='Get input from file instead of interactive mode, '
                       'each line is an input.')
    group.add_argument("--sample-output-file", type=str, default=None,
                       help='Output file got from --sample-input-file')
    group.add_argument("--num-samples", type=int, default=0,
                       help='Number of samples to generate unconditionally, '
                       'defaults to 0 and interactive conditional sampling')
    group.add_argument("--genfile", type=str,
                       help='Output file when generating unconditionally')
    group.add_argument("--recompute", action='store_true',
                       help='During generation recompute all attention '
                       'instead of using previously computed keys/values.')

    return parser


def main():
    """Main program."""

    initialize_megatron(extra_args_provider=add_text_generate_args,
                        args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})

    # Set up model and load checkpoint.
    model = get_model(model_provider)
    args = get_args()
    if args.load is not None:
        _ = load_checkpoint(model, None, None)

    # Generate samples.
    if args.num_samples == 0:
        args.batch_size = 1
        if args.sample_input_file != "":
            generate_samples_input_from_file(model)
        else:
            generate_samples_interactive(model)
    else:
        generate_and_write_samples_unconditional(model)


if __name__ == "__main__":

    main()