transformer.py 77 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
3

"""Transformer."""
liangjing's avatar
v1  
liangjing committed
4
import math
xingjinliang's avatar
xingjinliang committed
5
6
7
8
import os
from contextlib import nullcontext
from typing import Optional

liangjing's avatar
v1  
liangjing committed
9
import numpy as np
10
import torch
11
import torch.nn.functional as F
12

xingjinliang's avatar
xingjinliang committed
13
from megatron import core
14
from megatron.core import mpu, tensor_parallel
15
from megatron.core.enums import ModelType
xingjinliang's avatar
xingjinliang committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from megatron.legacy.model.enums import AttnMaskType, LayerType, AttnType
from megatron.legacy.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.legacy.model.fused_bias_gelu import bias_gelu_impl
from megatron.core.models.common.embeddings import apply_rotary_pos_emb
from megatron.core.jit import jit_fuser
from megatron.core.num_microbatches_calculator import get_num_microbatches
from megatron.core.parallel_state import (
    get_expert_tensor_and_model_parallel_group,
    get_tensor_model_parallel_group,
)
from megatron.core.tensor_parallel import (
    gather_from_sequence_parallel_region,
    reduce_scatter_to_sequence_parallel_region,
    get_cuda_rng_tracker,
    get_data_parallel_rng_tracker_name,
)
from megatron.legacy.model.enums import AttnMaskType, AttnType, LayerType
from megatron.legacy.model.fused_bias_gelu import bias_gelu_impl
from megatron.legacy.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.legacy.model.utils import (
    attention_mask_func,
    erf_gelu,
    get_norm,
    openai_gelu,
)
from megatron.training import get_args, get_timers

wxj's avatar
wxj committed
43
44
45
import torch._dynamo
torch._dynamo.config.suppress_errors = True

xingjinliang's avatar
xingjinliang committed
46
from .module import MegatronModule
47

48
49
50
51
52
53
54
55
try:
    from einops import rearrange
except ImportError:
    rearrange = None

try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_func
except ImportError:
liangjing's avatar
v1  
liangjing committed
56
    try:
xingjinliang's avatar
xingjinliang committed
57
58
59
        from flash_attn.flash_attn_interface import (
            flash_attn_varlen_func as flash_attn_unpadded_func,
        )
liangjing's avatar
v1  
liangjing committed
60
61
    except ImportError:
        flash_attn_unpadded_func = None
62

63
64
65
66
67
68
69
70
71
72
""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
73
    Transformer takes input of size [s, b, h] and returns a
74
75
76
77
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

78
class DropPath(MegatronModule):
79
    """Drop paths (Stochastic Depth) per sample
80
81
82
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
83
    def __init__(self, drop_prob=0.):
84
85
86
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
87
    def forward(self, hidden_state):
88
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
89
            return hidden_state
90
91
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
92
93
        # hidden_state: [s, b, h]
        shape = (1,) + (hidden_state.shape[1],) + (1,) * (hidden_state.ndim - 2)
94
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
95
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
96
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
97
        output = hidden_state.div(keep_prob) * random_tensor
98
99
        return output

100
101
102
103
104
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
105
    state back into h hidden dimension.
106
107
    """

xingjinliang's avatar
xingjinliang committed
108
    def __init__(self, config, is_expert=False):
109
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
110
        args = get_args()
111

liangjing's avatar
v1  
liangjing committed
112
113
114
115
116
        self.add_bias = config.add_bias_linear

        ffn_hidden_size = config.ffn_hidden_size
        if config.gated_linear_unit:
            ffn_hidden_size *= 2
117

118
        # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
119
        self.dense_h_to_4h = tensor_parallel.ColumnParallelLinear(
liangjing's avatar
v1  
liangjing committed
120
121
122
123
            config.hidden_size,
            ffn_hidden_size,
            config=config,
            init_method=config.init_method,
124
            bias=self.add_bias,
125
            gather_output=False,
126
            skip_bias_add=True,
xingjinliang's avatar
xingjinliang committed
127
            is_expert=is_expert,
liangjing's avatar
v1  
liangjing committed
128
        )
129

130
131
132
133
        self.bias_gelu_fusion = False
        self.activation_func = None
        self.swiglu = args.swiglu

134
135
136
137
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
138
        elif args.swiglu:
wxj's avatar
wxj committed
139
            @torch.compile(mode="max-autotune-no-cudagraphs")
140
141
142
143
144
145
146
147
148
149
150
            def swiglu(x):
                x = torch.chunk(x, 2, dim=-1)
                return F.silu(x[0]) * x[1]
            self.activation_func = swiglu
        elif args.squared_relu:
            def squared_relu(x):
                return torch.pow(F.relu(x), 2)
            self.activation_func = squared_relu
        else:
            self.bias_gelu_fusion = args.bias_gelu_fusion
            self.activation_func = F.gelu
151
152

        # Project back to h.
153
        self.dense_4h_to_h = tensor_parallel.RowParallelLinear(
liangjing's avatar
v1  
liangjing committed
154
155
156
157
            config.ffn_hidden_size,
            config.hidden_size,
            config=config,
            init_method=config.output_layer_init_method,
158
            bias=self.add_bias,
xingjinliang's avatar
xingjinliang committed
159
160
161
            skip_bias_add=True,
            input_is_parallel=True,
            is_expert=is_expert,
liangjing's avatar
v1  
liangjing committed
162
        )
163

164
165
    def forward(self, hidden_states):

166
167
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
168

169
        if self.bias_gelu_fusion:
170
171
172
            assert self.add_bias is True
            assert self.activation_func == F.gelu
            intermediate_parallel = bias_gelu_impl(intermediate_parallel, bias_parallel)
173
        else:
Jared Casper's avatar
Jared Casper committed
174
            if bias_parallel is not None:
175
176
                intermediate_parallel = intermediate_parallel + bias_parallel
            intermediate_parallel = self.activation_func(intermediate_parallel)
177
178
179
180

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
181

xingjinliang's avatar
xingjinliang committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
def sinkhorn(cost, tol=0.0001):
    cost = torch.exp(cost)
    d0 = torch.ones(cost.size(0), device=cost.device, dtype=cost.dtype)
    d1 = torch.ones(cost.size(1), device=cost.device, dtype=cost.dtype)

    eps = 0.00000001
    error = 1e9
    d1_old = d1
    while error > tol:
        d0 = (1/d0.size(0))*1/(torch.sum(d1*cost,1) + eps)
        d1 = (1/d1.size(0))*1/(torch.sum(d0.unsqueeze(1)*cost,0)+eps)
        error = torch.mean(torch.abs(d1_old-d1))
        d1_old = d1
    return d1*cost*d0.unsqueeze(1)


def get_router_linear_layer(config):
    args = get_args()
    router = torch.nn.Linear(args.hidden_size, args.num_experts, bias=False)
    with get_cuda_rng_tracker().fork(get_data_parallel_rng_tracker_name()):
        config.init_method(router.weight)
    setattr(router.weight, 'sequence_parallel',config.sequence_parallel)
    return router


rprenger's avatar
rprenger committed
207
208
209
210
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
liangjing's avatar
v1  
liangjing committed
211
    def __init__(self, config):
rprenger's avatar
rprenger committed
212
213
        super(SwitchMLP, self).__init__()
        args = get_args()
xingjinliang's avatar
xingjinliang committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        self.router = get_router_linear_layer(config)
        self.expert_parallel_size = mpu.get_expert_model_parallel_world_size()
        self.sequence_parallel = config.sequence_parallel
        self.add_bias = config.add_bias_linear

        assert args.num_experts % self.expert_parallel_size == 0
        self.num_local_experts = args.num_experts // self.expert_parallel_size
        local_expert_indices_offset = mpu.get_expert_model_parallel_rank() * self.num_local_experts
        self.local_expert_indices = [local_expert_indices_offset + i for i in range(self.num_local_experts)]

        self.local_experts = torch.nn.ModuleList()
        for i in range(self.num_local_experts):
            self.local_experts.append(ParallelMLP(config, is_expert=True))

        self.tp_ep_group = get_expert_tensor_and_model_parallel_group()

    def gather_indices(self, local_indices):
        """ Gather tensors and concatinate along the first dimension."""
        world_size = torch.distributed.get_world_size(group=self.tp_ep_group)
        # Bypass the function if we are using only 1 GPU.
        if world_size == 1:
            return local_indices

        dim_size = list(local_indices.size())
        dim_size[0] = dim_size[0] * world_size

        # TODO pre allocate memory
        output = torch.empty(dim_size, dtype=local_indices.dtype,
                             device=torch.cuda.current_device())
        torch.distributed._all_gather_base(
            output, local_indices.contiguous(), group=self.tp_ep_group
        )
        return output
247

rprenger's avatar
rprenger committed
248
    def forward(self, hidden_states):
xingjinliang's avatar
xingjinliang committed
249
250
        # hidden_states: [b, s, h]
        args = get_args()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
251
252
        s = hidden_states.size(0)
        b = hidden_states.size(1)
rprenger's avatar
rprenger committed
253
        h = hidden_states.size(2)
xingjinliang's avatar
xingjinliang committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
        route = self.router(hidden_states).view(-1, args.num_experts)

        # TODO (rprenger) Right now we're just using the sinkhorn algorithm
        # for load balancing. There should be an option to do no load balancing
        # and the algorithm and parametets should be further tested
        if self.training:
            with torch.no_grad():
                sinkroute = sinkhorn(route.detach().to(dtype=torch.float32))
                _, max_ind = torch.max(sinkroute, dim=1)
            route = torch.sigmoid(route)
            max_prob = route[torch.arange(route.size(0)), max_ind]
        else:
            route = torch.sigmoid(route)
            max_prob, max_ind = torch.max(route, dim=1)

        max_prob = torch.unsqueeze(max_prob, 1)
        hidden_states = hidden_states.view(-1, hidden_states.size(2))
271

rprenger's avatar
rprenger committed
272
        # TODO (rprenger) TODO this could be made easier to read
Vijay Korthikanti's avatar
Vijay Korthikanti committed
273
        # Converting [s, b, h] to [s*b, h].
274
        # Each vector could be routed differently
xingjinliang's avatar
xingjinliang committed
275
276
277
278
279
280
281
        if self.sequence_parallel or (self.expert_parallel_size > 1):
            global_hidden_states = \
                gather_from_sequence_parallel_region(hidden_states, group=self.tp_ep_group)
            global_indices = self.gather_indices(max_ind)
        else:
            global_hidden_states = hidden_states
            global_indices = max_ind
rprenger's avatar
rprenger committed
282

xingjinliang's avatar
xingjinliang committed
283
284
285
        output_total = torch.zeros_like(global_hidden_states)
        if self.add_bias:
            output_bias_total = torch.zeros_like(global_hidden_states)
286

xingjinliang's avatar
xingjinliang committed
287
288
289
290
        for expert_num, expert in enumerate(self.local_experts):
            local_expert_index = self.local_expert_indices[expert_num]
            local_indices = (global_indices == local_expert_index).nonzero()
            hidden = global_hidden_states[local_indices, :]
rprenger's avatar
rprenger committed
291
            output, output_bias = expert(hidden)
xingjinliang's avatar
xingjinliang committed
292
293
            output_total[local_indices, :] = output
            if self.add_bias:
liangjing's avatar
v1  
liangjing committed
294
                output_bias = output_bias.expand_as(output)
xingjinliang's avatar
xingjinliang committed
295
296
297
298
299
300
301
302
303
304
305
306
307
                output_bias_total[local_indices, :] = output_bias

        if self.sequence_parallel or (self.expert_parallel_size > 1):
            output_total = \
                reduce_scatter_to_sequence_parallel_region(output_total, group=self.tp_ep_group)
            if self.add_bias:
                output_bias_total = \
                    reduce_scatter_to_sequence_parallel_region(output_bias_total, group=self.tp_ep_group)

                # bias is duplicated across tensor parallelism ranks;
                # reduce scatter reduces bias across tensor parallel_ranks
                output_bias_total = \
                    output_bias_total/mpu.get_tensor_model_parallel_world_size()
308

rprenger's avatar
rprenger committed
309
        output_total = output_total*max_prob
Vijay Korthikanti's avatar
Vijay Korthikanti committed
310
        output_total = output_total.view(s, b, h)
xingjinliang's avatar
xingjinliang committed
311
        if self.add_bias:
liangjing's avatar
v1  
liangjing committed
312
313
314
315
            output_bias_total = output_bias_total*max_prob
            output_bias_total = output_bias_total.view(s, b, h)
        else:
            output_bias_total = None
rprenger's avatar
rprenger committed
316
317

        return output_total, output_bias_total
318

319
320

class CoreAttention(MegatronModule):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
321

liangjing's avatar
v1  
liangjing committed
322
    def __init__(self, layer_number, config,
323
324
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
liangjing's avatar
v1  
liangjing committed
325
326
        self.fp16 = config.fp16
        self.bf16 = config.bf16
327

liangjing's avatar
v1  
liangjing committed
328
329
        self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
330
331
332
333
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
liangjing's avatar
v1  
liangjing committed
334
        self.sequence_parallel = config.sequence_parallel
335

liangjing's avatar
v1  
liangjing committed
336
        projection_size = config.kv_channels * config.num_attention_heads
337
338

        # Per attention head and per partition values.
339
        world_size = mpu.get_tensor_model_parallel_world_size()
340
341
342
        self.hidden_size_per_partition = core.utils.divide(projection_size,
                                                           world_size)
        self.hidden_size_per_attention_head = core.utils.divide(
liangjing's avatar
v1  
liangjing committed
343
            projection_size, config.num_attention_heads)
344
        self.num_attention_heads_per_partition = core.utils.divide(
liangjing's avatar
v1  
liangjing committed
345
            config.num_attention_heads, world_size)
346
347
348
349
350
351
352
353
354
355

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
liangjing's avatar
v1  
liangjing committed
356
            config.masked_softmax_fusion,
357
358
359
360
361
362
363
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
liangjing's avatar
v1  
liangjing committed
364
        self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
365

366
367
368
369
370
371
372
373
374
375
376
377
378
379
    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
liangjing's avatar
v1  
liangjing committed
380
381
        query_layer = query_layer.reshape(output_size[2],
                                          output_size[0] * output_size[1], -1)
382
383
384
385
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
386
        # preallocting input tensor: [b * np, sq, sk]
387
        matmul_input_buffer = mpu.get_global_memory_buffer().get_tensor(
388
            (output_size[0]*output_size[1], output_size[2], output_size[3]),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
389
            query_layer.dtype, "mpu")
390
391
392

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
393
            matmul_input_buffer,
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
411
        if not self.sequence_parallel:
412
            with tensor_parallel.get_cuda_rng_tracker().fork():
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
                attention_probs = self.attention_dropout(attention_probs)
        else:
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
class FlashSelfAttention(torch.nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
                 device=None, dtype=None):
        super().__init__()
        assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
                                                      'e.g., with pip install flash-attn')
        assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, q, k, v):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
        """
Jimmy Zhang's avatar
Jimmy Zhang committed
481
482
483

        assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v)))
        assert all((i.is_cuda for i in (q,k,v)))
Jimmy Zhang's avatar
Jimmy Zhang committed
484
485

        batch_size, seqlen_q = q.shape[0], q.shape[1]
Jimmy Zhang's avatar
Jimmy Zhang committed
486
        seqlen_k = k.shape[1]
Jimmy Zhang's avatar
Jimmy Zhang committed
487

Jimmy Zhang's avatar
Jimmy Zhang committed
488
489
        q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
        cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
Jimmy Zhang's avatar
Jimmy Zhang committed
490
491
                                    device=q.device)

Jimmy Zhang's avatar
Jimmy Zhang committed
492
493
494
495
496
497
        if self.training:
            # during training q,k,v always have same seqlen
            assert seqlen_k == seqlen_q

            is_causal = self.causal
            cu_seqlens_k = cu_seqlens_q
liangjing's avatar
v1  
liangjing committed
498
            dropout_p = self.dropout_p
Jimmy Zhang's avatar
Jimmy Zhang committed
499
        else:
Jimmy Zhang's avatar
Jimmy Zhang committed
500
            # turn off FA causal mask after first inference autoregressive iteration
Jimmy Zhang's avatar
Jimmy Zhang committed
501
            # only on first autoregressive step q,k,v have same seqlen
Jimmy Zhang's avatar
Jimmy Zhang committed
502
503
            is_causal = seqlen_q == seqlen_k
            cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
Jimmy Zhang's avatar
Jimmy Zhang committed
504
                        device=q.device)
liangjing's avatar
v1  
liangjing committed
505
            dropout_p = 0
Jimmy Zhang's avatar
Jimmy Zhang committed
506

Jimmy Zhang's avatar
Jimmy Zhang committed
507
508
        output = flash_attn_unpadded_func(
            q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
liangjing's avatar
v1  
liangjing committed
509
            dropout_p,
Jimmy Zhang's avatar
Jimmy Zhang committed
510
511
            softmax_scale=self.softmax_scale, causal=is_causal
        )
Jimmy Zhang's avatar
Jimmy Zhang committed
512

513
514
515
516
        output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
        return output


517
class ParallelAttention(MegatronModule):
518
519
    """Parallel self-attention layer abstract class.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
520
    Self-attention layer takes input with size [s, b, h]
521
522
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
523

liangjing's avatar
v1  
liangjing committed
524
    def __init__(self, config, layer_number,
525
526
527
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
528
        args = get_args()
529
        self.layer_number = max(1, layer_number)
530
531
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
liangjing's avatar
v1  
liangjing committed
532
533
        self.params_dtype = config.params_dtype
        self.sequence_parallel = config.sequence_parallel
xingjinliang's avatar
xingjinliang committed
534
        self.config = config
liangjing's avatar
v1  
liangjing committed
535
536
537
538
539
540
541
542
        self.group_query_attention = args.group_query_attention
        self.num_query_groups = args.num_query_groups

        query_projection_size = config.kv_channels * config.num_attention_heads
        if self.group_query_attention:
            kv_projection_size = args.kv_channels * args.num_query_groups
        else:
            kv_projection_size = args.kv_channels * args.num_attention_heads
543

wangxj's avatar
wangxj committed
544
        self.use_flash_attn = args.use_flash_attn \
liangjing's avatar
v1  
liangjing committed
545
546
            and attention_type == AttnType.self_attn \
            and self.attn_mask_type == AttnMaskType.causal
547
        if self.use_flash_attn:
wangxj's avatar
wangxj committed
548
549
550
            if flash_attn_unpadded_func is None:
                raise ImportError('FlashAttention is not installed, please install with '
                                  'pip install flash-attn')
551
552
553
554
555
556
            assert attention_type == AttnType.self_attn, ('FlashAttention code path only supports '
                                                          'self-attention for now')
            assert self.attn_mask_type == AttnMaskType.causal, ('FlashAttention code path only '
                                                                'supports causal mask for now')
            if rearrange is None:
                raise ImportError('einops is not installed, please install with pip install einops')
557

558
        # Per attention head and per partition values.
559
        world_size = mpu.get_tensor_model_parallel_world_size()
560
        self.hidden_size_per_attention_head = core.utils.divide(
liangjing's avatar
v1  
liangjing committed
561
            query_projection_size, config.num_attention_heads)
562
        self.num_attention_heads_per_partition = core.utils.divide(
liangjing's avatar
v1  
liangjing committed
563
564
565
566
567
568
569
570
571
572
            config.num_attention_heads, world_size)

        if self.group_query_attention:
            if args.num_query_groups % world_size != 0:
                raise NotImplementedError('Currently the num_query_groups should be '
                                          'a multiple of the tensor parallel size')
            self.num_query_groups_per_partition = core.utils.divide(
                        args.num_query_groups, world_size)
        else:
            self.num_query_groups_per_partition = self.num_attention_heads_per_partition
573
574

        # Strided linear layer.
575
        if attention_type == AttnType.self_attn:
576
            self.query_key_value = tensor_parallel.ColumnParallelLinear(
liangjing's avatar
v1  
liangjing committed
577
578
579
580
                config.hidden_size,
                query_projection_size + 2 * kv_projection_size,
                config=config,
                init_method=config.init_method,
xingjinliang's avatar
xingjinliang committed
581
                bias=args.add_bias_linear or args.add_qkv_bias,
liangjing's avatar
v1  
liangjing committed
582
                gather_output=False)
583
584
585
        else:
            assert attention_type == AttnType.cross_attn

liangjing's avatar
v1  
liangjing committed
586
587
588
            if self.group_query_attention:
                raise NotImplementedError("Grouped query attention not implemented for cross-attention.")
            assert query_projection_size == kv_projection_size
589

liangjing's avatar
v1  
liangjing committed
590
591
592
593
594
595
596
            self.query = tensor_parallel.ColumnParallelLinear(
                config.hidden_size,
                query_projection_size,
                config=config,
                init_method=config.init_method,
                bias=config.add_bias_linear,
                gather_output=False)
597

liangjing's avatar
v1  
liangjing committed
598
599
600
601
602
603
604
605
606
            self.key_value = tensor_parallel.ColumnParallelLinear(
                config.hidden_size,
                2 * kv_projection_size,
                config=config,
                init_method=config.init_method,
                bias=config.add_bias_linear,
                gather_output=False)

        self.core_attention = CoreAttention(self.layer_number, config,
607
                                            self.attn_mask_type)
liangjing's avatar
v1  
liangjing committed
608
        self.checkpoint_core_attention = config.recompute_granularity == 'selective'
609

wangxj's avatar
wangxj committed
610
        if self.use_flash_attn:
611
            self.core_attention_flash = FlashSelfAttention(
liangjing's avatar
v1  
liangjing committed
612
                causal=True, attention_dropout=config.attention_dropout
613
614
            )

615
        # Output.
616
        self.dense = tensor_parallel.RowParallelLinear(
liangjing's avatar
v1  
liangjing committed
617
618
619
620
            query_projection_size,
            config.hidden_size,
            config=config,
            init_method=config.output_layer_init_method,
621
            bias=args.add_bias_linear,
622
            input_is_parallel=True,
liangjing's avatar
v1  
liangjing committed
623
            skip_bias_add=True)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
624

625
    def _checkpointed_attention_forward(self, query_layer, key_layer,
Mostofa Patwary's avatar
Mostofa Patwary committed
626
627
                                        value_layer, attention_mask,
                                        rotary_pos_emb=None):
628
629
630
631
632
633
634
635
636
637
        """Forward method with activation checkpointing."""
        def custom_forward(*inputs):
            query_layer = inputs[0]
            key_layer = inputs[1]
            value_layer = inputs[2]
            attention_mask = inputs[3]
            output_ = self.core_attention(query_layer, key_layer,
                                          value_layer, attention_mask)
            return output_

Mostofa Patwary's avatar
Mostofa Patwary committed
638
639
640
        q_pos_emb, k_pos_emb = (None, None) if rotary_pos_emb is None \
            else rotary_pos_emb

641
        hidden_states = tensor_parallel.checkpoint(
642
            custom_forward,
Mostofa Patwary's avatar
Mostofa Patwary committed
643
644
            False, query_layer, key_layer, value_layer, attention_mask,
            q_pos_emb, k_pos_emb)
645
646

        return hidden_states
647

liangjing's avatar
v1  
liangjing committed
648
    def _allocate_memory(self, inference_max_sequence_len, batch_size, num_attention_heads):
649
650
651
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
liangjing's avatar
v1  
liangjing committed
652
            num_attention_heads,
653
654
655
656
657
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())

    def forward(self, hidden_states, attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
658
659
                encoder_output=None, inference_params=None,
                rotary_pos_emb=None):
660
        # hidden_states: [sq, b, h]
661

662
663
664
        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
Mostofa Patwary's avatar
Mostofa Patwary committed
665
        is_first_step = False
mshoeybi's avatar
mshoeybi committed
666
        if inference_params:
667
            if self.layer_number not in inference_params.key_value_memory_dict:
liangjing's avatar
v1  
liangjing committed
668
                inf_max_seq_len = inference_params.max_sequence_length
mshoeybi's avatar
mshoeybi committed
669
                inf_max_batch_size = inference_params.max_batch_size
670
                inference_key_memory = self._allocate_memory(
liangjing's avatar
v1  
liangjing committed
671
672
                    inf_max_seq_len, inf_max_batch_size,
                    self.num_query_groups_per_partition)
673
                inference_value_memory = self._allocate_memory(
liangjing's avatar
v1  
liangjing committed
674
675
676
                    inf_max_seq_len, inf_max_batch_size,
                    self.num_query_groups_per_partition)

677
678
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
Mostofa Patwary's avatar
Mostofa Patwary committed
679
                is_first_step = True
680
681
682
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
683

684
685
686
        # =====================
        # Query, Key, and Value
        # =====================
687
        if self.attention_type == AttnType.self_attn:
xingjinliang's avatar
xingjinliang committed
688

liangjing's avatar
v1  
liangjing committed
689
            # Attention heads [sq, b, h] --> [sq, b, ng * (np/ng + 2) * hn)]
690
691
            mixed_x_layer, _ = self.query_key_value(hidden_states)

liangjing's avatar
v1  
liangjing committed
692
693
694
695
696
697
698
699
            # [sq, b, hp] --> [sq, b, ng, (np/ng + 2) * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + (
                self.num_query_groups_per_partition,
                (
                    (self.num_attention_heads_per_partition // self.num_query_groups_per_partition + 2)
                    * self.hidden_size_per_attention_head
                ),
            )
700
701
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

liangjing's avatar
v1  
liangjing committed
702
            # [sq, b, ng, (np/ng + 2) * hn] --> [sq, b, ng, np/ng * hn], [sq, b, ng, hn], [sq, b, ng, hn]
703
            (query_layer,
liangjing's avatar
v1  
liangjing committed
704
705
706
707
708
709
710
711
712
713
714
715
            key_layer,
            value_layer) = torch.split(
                mixed_x_layer,
                [
                    (
                        self.num_attention_heads_per_partition // self.num_query_groups_per_partition
                        * self.hidden_size_per_attention_head
                    ),
                    self.hidden_size_per_attention_head,
                    self.hidden_size_per_attention_head
                ],
                dim=3)
xingjinliang's avatar
xingjinliang committed
716

liangjing's avatar
v1  
liangjing committed
717
            # [sq, b, ng, np/ng * hn] -> [sq, b, np, hn] -
wangxj's avatar
wangxj committed
718
            query_layer = query_layer.view(query_layer.size(0), query_layer.size(1), -1, self.hidden_size_per_attention_head)
719
720
721
722
723
724
725
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
liangjing's avatar
v1  
liangjing committed
726
                2 * self.hidden_size_per_attention_head)
727
728
729
730
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
liangjing's avatar
v1  
liangjing committed
731
            value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_kv_layer, 2)
732
733
734
735
736
737

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
liangjing's avatar
v1  
liangjing committed
738
                self.hidden_size_per_attention_head)
739
            query_layer = query_layer.view(*new_tensor_shape)
740

mshoeybi's avatar
mshoeybi committed
741
742
743
        # ==================================
        # Adjust key and value for inference
        # ==================================
744

Mostofa Patwary's avatar
Mostofa Patwary committed
745
746
        # duplicate the pos_emb for self attention
        if rotary_pos_emb is not None:
Mostofa Patwary's avatar
Mostofa Patwary committed
747
748
749
750
            if isinstance(rotary_pos_emb, tuple):
                rotary_pos_emb = rotary_pos_emb
            else:
                rotary_pos_emb = ((rotary_pos_emb,) * 2)
Mostofa Patwary's avatar
Mostofa Patwary committed
751

mshoeybi's avatar
mshoeybi committed
752
        if inference_params:
mshoeybi's avatar
mshoeybi committed
753
754
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
755
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
756
757
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
wangxj's avatar
wangxj committed
758
759
            assert sequence_end <= inference_key_memory.size(0), ("Current sequence length is "
            "longer than expected maximum sequence length! Increase inference_max_seq_length.")
760
            # Copy key and values.
761
762
763
764
765
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
766
                :sequence_end, batch_start:batch_end, ...]
767
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
768
                :sequence_end, batch_start:batch_end, ...]
769

Mostofa Patwary's avatar
Mostofa Patwary committed
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790

            # adjust the key rotary positional embedding
            if rotary_pos_emb is not None:
                q_pos_emb, k_pos_emb = rotary_pos_emb
                # need to cross check this condition during inference
                # if not set_inference_key_value_memory:
                if not is_first_step:
                    # In inference, we compute one token at a time.
                    # Select the correct positional embedding
                    # (only the last token in the sequence)
                    q_pos_emb = q_pos_emb[sequence_end - 1 : sequence_end]
                else:
                    # In the first forward pass of inference,
                    # we use the entire provided prefix.
                    # q_pos_emb here has the rope embeddings of the entire
                    # prefix + to-be-generated output so
                    # we slice to just the prefix.
                    q_pos_emb = q_pos_emb[:sequence_end, :, :, :]
                k_pos_emb = k_pos_emb[:sequence_end, :, :, :]
                rotary_pos_emb = (q_pos_emb, k_pos_emb)

791
792
793
        # ==================================
        # core attention computation
        # ==================================
794

liangjing's avatar
v1  
liangjing committed
795
        # expand the key_layer and value_layer [sk, b, ng, hn] -> [sk, b, np, hn]
xingjinliang's avatar
xingjinliang committed
796
797
798
799
800
801
802
803
804
        if self.num_attention_heads_per_partition // self.num_query_groups_per_partition > 1:
            key_layer = key_layer.repeat_interleave(
                self.num_attention_heads_per_partition // self.num_query_groups_per_partition,
                dim = 2
            )
            value_layer = value_layer.repeat_interleave(
                self.num_attention_heads_per_partition // self.num_query_groups_per_partition,
                dim = 2
            )
liangjing's avatar
v1  
liangjing committed
805

Mostofa Patwary's avatar
Mostofa Patwary committed
806
807
808
        # apply relative positional encoding (rotary embedding)
        if rotary_pos_emb is not None:
            q_pos_emb, k_pos_emb = rotary_pos_emb
xingjinliang's avatar
xingjinliang committed
809
810
            query_layer = apply_rotary_pos_emb(query_layer, q_pos_emb,self.config)
            key_layer = apply_rotary_pos_emb(key_layer, k_pos_emb,self.config)
Mostofa Patwary's avatar
Mostofa Patwary committed
811
812
813
814
815
            # TODO, can apply positional embedding to value_layer so it has
            # absolute positional embedding.
            # otherwise, only relative positional embedding takes effect
            # value_layer = apply_rotary_pos_emb(value_layer, k_pos_emb)

816
817
818
819
820
821
822
        if not self.use_flash_attn:
            if self.checkpoint_core_attention:
                context_layer = self._checkpointed_attention_forward(
                    query_layer, key_layer, value_layer, attention_mask)
            else:
                context_layer = self.core_attention(
                    query_layer, key_layer, value_layer, attention_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
823
        else:
wangxj's avatar
wangxj committed
824
            q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous()
825
826
827
                       for x in (query_layer, key_layer, value_layer)]
            if not self.sequence_parallel:
                with tensor_parallel.get_cuda_rng_tracker().fork():
wangxj's avatar
wangxj committed
828
                    context_layer = self.core_attention_flash(q, k, v)
829
            else:
wangxj's avatar
wangxj committed
830
831
                context_layer = self.core_attention_flash(q, k, v)
            context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous()
832
833

        # =================
834
        # Output. [sq, b, h]
835
836
837
        # =================

        output, bias = self.dense(context_layer)
838

839
840
841
        return output, bias


842
def bias_dropout_add(x, bias, residual, prob, training):
Jared Casper's avatar
Jared Casper committed
843
    # type: (Tensor, Optional[Tensor], Tensor, float, bool) -> Tensor
844
845
846
    if bias is not None:
        x = x + bias
    out = torch.nn.functional.dropout(x, p=prob, training=training)
847
848
849
850
851
852
853
854
855
856
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


xingjinliang's avatar
xingjinliang committed
857
@jit_fuser
858
def bias_dropout_add_fused_train(x: torch.Tensor,
Jared Casper's avatar
Jared Casper committed
859
                                 bias: Optional[torch.Tensor],
860
861
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
862
863
864
    return bias_dropout_add(x, bias, residual, prob, True)


xingjinliang's avatar
xingjinliang committed
865
@jit_fuser
866
def bias_dropout_add_fused_inference(x: torch.Tensor,
Jared Casper's avatar
Jared Casper committed
867
                                     bias: Optional[torch.Tensor],
868
869
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
870
    return bias_dropout_add(x, bias, residual, prob, False)
871
872
873
874
875


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
876
    Transformer layer takes input with size [s, b, h] and returns an
877
878
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
879

liangjing's avatar
v1  
liangjing committed
880
    def __init__(self, config,
881
                 layer_number, layer_type=LayerType.encoder,
882
883
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
884
        args = get_args()
885
886

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
887
        self.layer_number = layer_number
888
        self.layer_type = layer_type
889

xingjinliang's avatar
xingjinliang committed
890
        self.apply_residual_connection_post_norm \
liangjing's avatar
v1  
liangjing committed
891
            = config.apply_residual_connection_post_layernorm
892

liangjing's avatar
v1  
liangjing committed
893
894
        self.bf16 = config.bf16
        self.fp32_residual_connection = config.fp32_residual_connection
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
895

xingjinliang's avatar
xingjinliang committed
896
897
        # Normalize the input data.
        self.input_norm = get_norm(config)
898
899

        # Self attention.
900
        self.self_attention = ParallelAttention(
liangjing's avatar
v1  
liangjing committed
901
            config,
902
903
904
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
liangjing's avatar
v1  
liangjing committed
905
906
        self.hidden_dropout = config.hidden_dropout
        self.bias_dropout_fusion = config.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
907
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
908

xingjinliang's avatar
xingjinliang committed
909
910
        # Normalize the attention output
        self.post_attention_norm = get_norm(config)
911

liangjing's avatar
v1  
liangjing committed
912
913
914
915
916
        # Cross attention.
        if self.layer_type in (LayerType.decoder,
                               LayerType.retro_decoder,
                               LayerType.retro_decoder_with_retriever,
                               LayerType.retro_encoder):
917
            self.inter_attention = ParallelAttention(
liangjing's avatar
v1  
liangjing committed
918
                config,
919
920
                layer_number,
                attention_type=AttnType.cross_attn)
xingjinliang's avatar
xingjinliang committed
921
922
            # Normalize the attention output.
            self.post_inter_attention_norm = get_norm(config)
923

924
        # MLP
rprenger's avatar
rprenger committed
925
        if args.num_experts is not None:
liangjing's avatar
v1  
liangjing committed
926
            self.mlp = SwitchMLP(config)
rprenger's avatar
rprenger committed
927
        else:
liangjing's avatar
v1  
liangjing committed
928
            self.mlp = ParallelMLP(config)
929

930
931
932
933
934
935
936
        # Set bias+dropout+add fusion grad_enable execution handler.
        TORCH_MAJOR = int(torch.__version__.split('.')[0])
        TORCH_MINOR = int(torch.__version__.split('.')[1])
        use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)
        self.bias_dropout_add_exec_handler = \
                nullcontext if use_nvfuser else torch.enable_grad

liangjing's avatar
v1  
liangjing committed
937
938
        if args.retro_add_retriever:
            self.retro_num_neighbors = args.retro_num_neighbors
xingjinliang's avatar
xingjinliang committed
939
940
941
            self.retro_chunk_length = args.retro_chunk_length
            self.retro_retrieved_length = \
                args.retro_num_retrieved_chunks * args.retro_chunk_length
liangjing's avatar
v1  
liangjing committed
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958

        # Retriever (bi-directional transformer with cross attention)
        if layer_type == LayerType.retro_decoder_with_retriever:
            self.retriever = ParallelTransformer(
                config=config,
                model_type=ModelType.retro_encoder,
                self_attn_mask_type=AttnMaskType.padding,
                pre_process=True,
                post_process=False,
            )
            self._retriever_key = 'retriever'
        else:
            self.retriever = None

    def default_decoder_cross_attention(self,
                                        encoder_output,
                                        enc_dec_attn_mask,
xingjinliang's avatar
xingjinliang committed
959
960
                                        norm_input,
                                        norm_output,
liangjing's avatar
v1  
liangjing committed
961
962
963
964
965
                                        bias_dropout_add_func):
        '''Cross attention for a standard encoder-decoder model.'''

        # Attention.
        attention_output, attention_bias = \
xingjinliang's avatar
xingjinliang committed
966
            self.inter_attention(norm_output,
liangjing's avatar
v1  
liangjing committed
967
968
969
970
                                 enc_dec_attn_mask,
                                 encoder_output=encoder_output)

        # Residual connection.
xingjinliang's avatar
xingjinliang committed
971
972
        if self.apply_residual_connection_post_norm:
            residual = norm_output
liangjing's avatar
v1  
liangjing committed
973
        else:
xingjinliang's avatar
xingjinliang committed
974
            residual = norm_input
liangjing's avatar
v1  
liangjing committed
975
976
977
978
979
980

        if attention_bias is not None:
            attention_bias = attention_bias.expand_as(residual)

        # Bias-dropout-add.
        with self.bias_dropout_add_exec_handler():
xingjinliang's avatar
xingjinliang committed
981
            norm_input = bias_dropout_add_func(
liangjing's avatar
v1  
liangjing committed
982
983
984
985
986
                attention_output,
                attention_bias,
                residual,
                self.hidden_dropout)

xingjinliang's avatar
xingjinliang committed
987
988
        # Normalize.
        norm_output = self.post_inter_attention_norm(norm_input)
liangjing's avatar
v1  
liangjing committed
989

xingjinliang's avatar
xingjinliang committed
990
        return norm_input, norm_output
liangjing's avatar
v1  
liangjing committed
991
992
993

    def retro_encoder_cross_attention(self,
                                      retriever_output,
xingjinliang's avatar
xingjinliang committed
994
995
                                      norm_input,
                                      norm_output,
liangjing's avatar
v1  
liangjing committed
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
                                      bias_dropout_add_func):
        """Cross attention for Retro encoder.

        Notation:
            ns : Sequence length.
            bs : Batch size.
            d  : Hidden size.
            l  : Number of chunks per sample (i.e., seq_length/chunk_length).
            k  : Number of neighbors.
            r  : Number of retrieved tokens (neighbors + continuation).
        """

xingjinliang's avatar
xingjinliang committed
1008
        ns, bs, d = norm_output.shape # [r, bs * l * k, d]
liangjing's avatar
v1  
liangjing committed
1009
1010

        # Divide sequence dimension into chunks.
xingjinliang's avatar
xingjinliang committed
1011
1012
1013
1014
1015
1016
1017
        chunked_outputs = norm_output.reshape(self.retro_retrieved_length,
                                              -1,
                                              self.retro_num_neighbors,
                                              d)
        chunked_outputs_before_norm = \
            norm_input.reshape(self.retro_retrieved_length, -1,
                               self.retro_num_neighbors, d) # [r, bs*l, k, d]
liangjing's avatar
v1  
liangjing committed
1018
1019

        # Per-chunk attention.
xingjinliang's avatar
xingjinliang committed
1020
1021
        norm_inputs = []
        norm_outputs = []
liangjing's avatar
v1  
liangjing committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
        for k in range(self.retro_num_neighbors):

            # Attention.
            chunked_output = chunked_outputs[:,:,k].contiguous()
            attention_output, attention_bias = \
                self.inter_attention(
                    chunked_output, # Q (neighbor embedding)
                    None,
                    encoder_output=retriever_output) # K, V (hidden act)

            # Residual connection.
xingjinliang's avatar
xingjinliang committed
1033
            if self.apply_residual_connection_post_norm:
liangjing's avatar
v1  
liangjing committed
1034
1035
                residual = chunked_output
            else:
xingjinliang's avatar
xingjinliang committed
1036
                residual = chunked_outputs_before_norm[:,:,k]
liangjing's avatar
v1  
liangjing committed
1037
1038
1039

            # Re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
xingjinliang's avatar
xingjinliang committed
1040
                norm_input = bias_dropout_add_func(
liangjing's avatar
v1  
liangjing committed
1041
1042
1043
1044
                    attention_output,
                    None if attention_bias is None else attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
xingjinliang's avatar
xingjinliang committed
1045
                norm_inputs.append(norm_input)
liangjing's avatar
v1  
liangjing committed
1046
1047

            # Layer norm.
xingjinliang's avatar
xingjinliang committed
1048
1049
            norm_output = self.post_inter_attention_norm(norm_input)
            norm_outputs.append(norm_output)
liangjing's avatar
v1  
liangjing committed
1050
1051

        # Concatenate layer norms.
xingjinliang's avatar
xingjinliang committed
1052
1053
1054
1055
        # norm_input : [r, k * bs * l, d]
        # norm_output : [r, k * bs * l, d]
        norm_input = torch.stack(norm_inputs, dim=1).reshape(ns, bs, d)
        norm_output = torch.stack(norm_outputs, dim=1).reshape(ns, bs, d)
liangjing's avatar
v1  
liangjing committed
1056

xingjinliang's avatar
xingjinliang committed
1057
        return norm_input, norm_output
liangjing's avatar
v1  
liangjing committed
1058
1059
1060
1061
1062

    def retro_decoder_cross_attention(self,
                                      retriever_input,
                                      retriever_output,
                                      retriever_attn_mask,
xingjinliang's avatar
xingjinliang committed
1063
1064
                                      norm_input,
                                      norm_output,
liangjing's avatar
v1  
liangjing committed
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
                                      inference_params,
                                      bias_dropout_add_func):
        """Cross attention for Retro decoder.

        Notation:
            ns : Sequence length.
            bs : Batch size.
            d  : Hidden size.
            l  : Number of chunks per sample (i.e., seq_length/chunk_length).
            m  : Number of tokens per chunk.
            k  : Number of neighbors.
            r  : Number of retrieved tokens (neighbors + continuation).
        """

xingjinliang's avatar
xingjinliang committed
1079
        ns, bs, d = norm_output.shape
liangjing's avatar
v1  
liangjing committed
1080
1081
1082
1083
1084
1085
1086
        l = int(np.ceil(ns / self.retro_chunk_length))

        # Retrieve neighbors.
        if self.layer_type == LayerType.retro_decoder_with_retriever:
            first_ns = ns % self.retro_chunk_length
            if first_ns > 0:
                first_chunk, rest_chunk = \
xingjinliang's avatar
xingjinliang committed
1087
                    norm_output[:first_ns], norm_output[first_ns:]
liangjing's avatar
v1  
liangjing committed
1088
1089
1090
1091
1092
1093
1094
1095
                first_chunk = torch.nn.functional.pad(
                    first_chunk,
                    (0, 0, 0, 0, 0, self.retro_chunk_length - first_ns),
                    'constant',
                    0)
                chunked_output = \
                    torch.cat((first_chunk, rest_chunk), dim=0) # [l * m, bs, d]
            else:
xingjinliang's avatar
xingjinliang committed
1096
                chunked_output = norm_output # [l * m, bs, d]
liangjing's avatar
v1  
liangjing committed
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
            chunked_output = chunked_output \
                .reshape(l, self.retro_chunk_length, bs, d) \
                .permute(1, 2, 0, 3) \
                .reshape(self.retro_chunk_length, bs * l, d) \
                .contiguous()

            # Get Encoder Output
            retriever_output = self.retriever(
                hidden_states=retriever_input,
                attention_mask=retriever_attn_mask,
                retriever_output=chunked_output,
                retriever_attn_mask=retriever_attn_mask,
                inference_params=inference_params) # [r, k * bs * l , d]
            retriever_output = retriever_output.reshape(
                self.retro_retrieved_length * self.retro_num_neighbors, bs * l, d) # [r * k, bs * l, d]

        # Chunks.
        pad = (ns - 1) % self.retro_chunk_length
xingjinliang's avatar
xingjinliang committed
1115
        attending_chunks = norm_output[pad:]
liangjing's avatar
v1  
liangjing committed
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
        padded_chunks = torch.nn.functional.pad(
            attending_chunks,
            (0, 0, 0, 0, 0, self.retro_chunk_length - 1),
            'constant', 0)
        padded_chunked_output = padded_chunks \
            .reshape(l, self.retro_chunk_length, bs, d) \
            .permute(1, 2, 0, 3)
        padded_chunked_output = padded_chunked_output.reshape(
            self.retro_chunk_length, bs * l, d).contiguous()

        # Encoder output.
        attention_output, attention_bias = \
            self.inter_attention(padded_chunked_output,
                                 None,
                                 encoder_output=retriever_output)

        # Residual connection.
xingjinliang's avatar
xingjinliang committed
1133
1134
        if self.apply_residual_connection_post_norm:
            residual = norm_output
liangjing's avatar
v1  
liangjing committed
1135
        else:
xingjinliang's avatar
xingjinliang committed
1136
            residual = norm_input
liangjing's avatar
v1  
liangjing committed
1137
1138
1139

        # Re-enable torch grad to enable fused optimization.
        with torch.enable_grad():
xingjinliang's avatar
xingjinliang committed
1140
            norm_input = bias_dropout_add_func(
liangjing's avatar
v1  
liangjing committed
1141
1142
1143
1144
                attention_output,
                None if attention_bias is None else attention_bias.expand_as(attention_output),
                torch.zeros_like(attention_output),
                self.hidden_dropout)
xingjinliang's avatar
xingjinliang committed
1145
            norm_input = norm_input \
liangjing's avatar
v1  
liangjing committed
1146
1147
                .reshape(self.retro_chunk_length, bs, l, d) \
                .permute(2, 0, 1, 3) # [l, m, bs, d]
xingjinliang's avatar
xingjinliang committed
1148
1149
1150
            norm_input = norm_input.reshape(self.retro_chunk_length * l, bs, d)
            norm_input = torch.nn.functional.pad(
                norm_input,
liangjing's avatar
v1  
liangjing committed
1151
1152
                (0, 0, 0, 0, pad, 0),
                'constant', 0)[:ns] # [ns, b, d]
xingjinliang's avatar
xingjinliang committed
1153
1154
1155
            # TODO: better redesign with inference param
            args = get_args()
            norm_input = args.retro_attention_gate * norm_input + residual
liangjing's avatar
v1  
liangjing committed
1156
1157

        # Layer norm post the decoder attention
xingjinliang's avatar
xingjinliang committed
1158
        norm_output = self.post_inter_attention_norm(norm_input)
liangjing's avatar
v1  
liangjing committed
1159

xingjinliang's avatar
xingjinliang committed
1160
        return retriever_output, norm_input, norm_output
liangjing's avatar
v1  
liangjing committed
1161

1162
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
1163
                encoder_output=None, enc_dec_attn_mask=None,
liangjing's avatar
v1  
liangjing committed
1164
1165
1166
1167
1168
                retriever_input=None,
                retriever_output=None,
                retriever_attn_mask=None,
                inference_params=None,
                rotary_pos_emb=None):
xingjinliang's avatar
xingjinliang committed
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178

        # Update the params in case the retro param changes during inference
        # TODO: better redesign with inference param
        args = get_args()
        if args.retro_add_retriever:
            self.retro_num_neighbors = args.retro_num_neighbors
            self.retro_chunk_length = args.retro_chunk_length
            self.retro_retrieved_length = \
                args.retro_num_retrieved_chunks * args.retro_chunk_length

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1179
        # hidden_states: [s, b, h]
1180

1181
        # Layer norm at the beginning of the transformer layer.
xingjinliang's avatar
xingjinliang committed
1182
        norm_output = self.input_norm(hidden_states)
liangjing's avatar
v1  
liangjing committed
1183

1184
        # Self attention.
1185
        attention_output, attention_bias = \
1186
            self.self_attention(
xingjinliang's avatar
xingjinliang committed
1187
                norm_output,
1188
                attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1189
                inference_params=inference_params,
Mostofa Patwary's avatar
Mostofa Patwary committed
1190
                rotary_pos_emb=rotary_pos_emb)
1191

1192
        # Residual connection.
xingjinliang's avatar
xingjinliang committed
1193
1194
        if self.apply_residual_connection_post_norm:
            residual = norm_output
1195
1196
1197
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1198
        if self.drop_path is None:
1199
1200
1201
1202
1203
1204
1205
1206
1207
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
1208
            else:
1209
                bias_dropout_add_func = get_bias_dropout_add(self.training)
1210

1211
1212
            if attention_bias is not None:
                attention_bias = attention_bias.expand_as(residual)
1213
            with self.bias_dropout_add_exec_handler():
xingjinliang's avatar
xingjinliang committed
1214
                norm_input = bias_dropout_add_func(
1215
                    attention_output,
1216
                    attention_bias,
1217
1218
1219
1220
1221
1222
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
xingjinliang's avatar
xingjinliang committed
1223
            norm_input = residual + self.drop_path(out)
1224

1225
        # Layer norm post the self attention.
xingjinliang's avatar
xingjinliang committed
1226
        norm_output = self.post_attention_norm(norm_input)
1227

liangjing's avatar
v1  
liangjing committed
1228
1229
1230
1231
        # Cross attention.
        if self.layer_type == LayerType.encoder:
            pass
        elif self.layer_type == LayerType.decoder:
xingjinliang's avatar
xingjinliang committed
1232
            norm_input, norm_output = \
liangjing's avatar
v1  
liangjing committed
1233
1234
1235
                self.default_decoder_cross_attention(
                    encoder_output,
                    enc_dec_attn_mask,
xingjinliang's avatar
xingjinliang committed
1236
1237
                    norm_input,
                    norm_output,
liangjing's avatar
v1  
liangjing committed
1238
1239
                    bias_dropout_add_func)
        elif self.layer_type == LayerType.retro_encoder:
xingjinliang's avatar
xingjinliang committed
1240
            norm_input, norm_output = \
liangjing's avatar
v1  
liangjing committed
1241
1242
                self.retro_encoder_cross_attention(
                    retriever_output,
xingjinliang's avatar
xingjinliang committed
1243
1244
                    norm_input,
                    norm_output,
liangjing's avatar
v1  
liangjing committed
1245
1246
1247
                    bias_dropout_add_func)
        elif self.layer_type in (LayerType.retro_decoder,
                                 LayerType.retro_decoder_with_retriever):
xingjinliang's avatar
xingjinliang committed
1248
            retriever_output, norm_input, norm_output = \
liangjing's avatar
v1  
liangjing committed
1249
1250
1251
1252
                self.retro_decoder_cross_attention(
                    retriever_input,
                    retriever_output,
                    retriever_attn_mask,
xingjinliang's avatar
xingjinliang committed
1253
1254
                    norm_input,
                    norm_output,
liangjing's avatar
v1  
liangjing committed
1255
1256
1257
1258
1259
                    inference_params,
                    bias_dropout_add_func)
        else:
            raise Exception("Unsupported layer type, '%s'." %
                            self.layer_type.name)
1260

1261
        # MLP.
xingjinliang's avatar
xingjinliang committed
1262
        mlp_output, mlp_bias = self.mlp(norm_output)
1263

1264
        # Second residual connection.
xingjinliang's avatar
xingjinliang committed
1265
1266
        if self.apply_residual_connection_post_norm:
            residual = norm_output
1267
        else:
xingjinliang's avatar
xingjinliang committed
1268
            residual = norm_input
1269

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1270
        if self.drop_path is None:
1271
1272
            if mlp_bias is not None:
                mlp_bias = mlp_bias.expand_as(residual)
1273
            with self.bias_dropout_add_exec_handler():
1274
1275
                output = bias_dropout_add_func(
                    mlp_output,
1276
                    mlp_bias,
1277
1278
                    residual,
                    self.hidden_dropout)
1279
1280
1281
1282
1283
1284
1285

            # Jit compiled function creates 'view' tensor. This tensor
            # potentially gets saved in the MPU checkpoint function context,
            # which rejects view tensors. While making a viewless tensor here
            # won't result in memory savings (like the data loader, or
            # p2p_communication), it serves to document the origin of this
            # 'view' tensor.
1286
1287
1288
            output = core.utils.make_viewless_tensor(inp = output,
                                                     requires_grad = output.requires_grad,
                                                     keep_graph = True)
1289

1290
        else:
1291
1292
1293
            if mlp_bias is not None:
                mlp_output = mlp_output + mlp_bias
            out = torch.nn.functional.dropout(mlp_output,
1294
1295
1296
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
1297

liangjing's avatar
v1  
liangjing committed
1298
1299
1300
1301
        if self.layer_type == LayerType.retro_decoder_with_retriever:
            return output, retriever_output
        else:
            return output
1302
1303


1304
1305
1306
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
1307
    The sole purpose of this layer is for when a standalone embedding layer
wangxj's avatar
wangxj committed
1308
    is used (i.e., args.account_for_embedding_in_pipeline_split == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
1309
1310
1311
1312
1313
1314
1315
1316
1317
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


liangjing's avatar
v1  
liangjing committed
1330
def _get_num_layers(args, model_type, is_decoder=False):
1331
    """Compute the number of transformer layers resident on the current rank."""
liangjing's avatar
v1  
liangjing committed
1332
1333
1334
1335
    is_encoder_and_decoder_model = (model_type == ModelType.encoder_and_decoder)
    if model_type == ModelType.retro_encoder:
        num_layers = args.retro_encoder_layers
    elif mpu.get_pipeline_model_parallel_world_size() > 1:
xingjinliang's avatar
xingjinliang committed
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
        assert not is_encoder_and_decoder_model, "This is no longer supported."
        assert args.num_layers == args.encoder_num_layers
        assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
            'num_layers must be divisible by transformer_pipeline_model_parallel_size'

        # When a standalone embedding stage is used, all transformer layers
        # are divided among pipeline rank >= 1, while on pipeline rank 0,
        # ranks either contain the input embedding layer (virtual pp rank 0),
        # or no layers at all (virtual pp rank >= 1).
        num_layers = (
            0
wangxj's avatar
wangxj committed
1347
            if args.account_for_embedding_in_pipeline_split
xingjinliang's avatar
xingjinliang committed
1348
1349
1350
            and mpu.get_pipeline_model_parallel_rank() == 0 else
            args.num_layers // args.transformer_pipeline_model_parallel_size
        )
1351
    else:
Jared Casper's avatar
Jared Casper committed
1352
1353
1354
1355
        if not is_decoder:
            num_layers = args.encoder_num_layers
        else:
            num_layers = args.decoder_num_layers
1356
1357
1358
    return num_layers


liangjing's avatar
v1  
liangjing committed
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
def _get_layer_type(model_type, default_layer_type, retro_layer_numbers,
                    layer_number):
    args = get_args()
    if args.retro_add_retriever and layer_number in retro_layer_numbers:
        if model_type == ModelType.retro_decoder:
            return LayerType.retro_decoder_with_retriever \
                if layer_number == retro_layer_numbers[0] \
                   else LayerType.retro_decoder
        elif model_type == ModelType.retro_encoder:
            return LayerType.retro_encoder
        else:
            raise Exception("Unsupported model type, '%s'." % model_type)
    else:
        return default_layer_type


1375
1376
1377
class ParallelTransformer(MegatronModule):
    """Transformer class."""

liangjing's avatar
v1  
liangjing committed
1378
1379
    def __init__(self, config,
                 model_type, layer_type=LayerType.encoder,
1380
                 self_attn_mask_type=AttnMaskType.padding,
xingjinliang's avatar
xingjinliang committed
1381
                 post_norm=True,
liangjing's avatar
v1  
liangjing committed
1382
1383
                 pre_process=True,
                 post_process=True,
1384
                 drop_path_rate=0.0):
1385
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
1386
        args = get_args()
1387

1388
        self.layer_type = layer_type
liangjing's avatar
v1  
liangjing committed
1389
1390
1391
        self.model_type = model_type
        self.bf16 = config.bf16
        self.fp32_residual_connection = config.fp32_residual_connection
xingjinliang's avatar
xingjinliang committed
1392
        self.post_norm = post_norm
1393
1394
1395
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
1396
        self.drop_path_rate = drop_path_rate
1397
        self.transformer_impl = args.transformer_impl
liangjing's avatar
v1  
liangjing committed
1398
        self.retro_add_retriever = args.retro_add_retriever
1399

1400
        # Store activation checkpoiting flag.
liangjing's avatar
v1  
liangjing committed
1401
1402
1403
        self.recompute_granularity = config.recompute_granularity
        self.recompute_method = config.recompute_method
        self.recompute_num_layers = config.recompute_num_layers
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1404
        self.distribute_saved_activations = \
liangjing's avatar
v1  
liangjing committed
1405
            config.distribute_saved_activations and not config.sequence_parallel
1406

liangjing's avatar
v1  
liangjing committed
1407
        self.sequence_parallel = config.sequence_parallel
1408

1409
        # Transformer Engine Init.
liangjing's avatar
v1  
liangjing committed
1410
1411
1412
        self.transformer_engine_v_0_10 = False
        self.transformer_engine_v_0_11 = False
        self.transformer_engine_v_0_8 = False
1413
1414
1415
        if self.transformer_impl == 'transformer_engine':
            global transformer_engine
            import transformer_engine
liangjing's avatar
v1  
liangjing committed
1416

xingjinliang's avatar
xingjinliang committed
1417
            if core.utils.is_te_min_version("0.8.0"):
liangjing's avatar
v1  
liangjing committed
1418
                self.transformer_engine_v_0_8 = True
xingjinliang's avatar
xingjinliang committed
1419
            if core.utils.is_te_min_version("0.10.0"):
liangjing's avatar
v1  
liangjing committed
1420
                self.transformer_engine_v_0_10 = True
xingjinliang's avatar
xingjinliang committed
1421
            if core.utils.is_te_min_version("0.11.0"):
liangjing's avatar
v1  
liangjing committed
1422
1423
                self.transformer_engine_v_0_11 = True

xingjinliang's avatar
xingjinliang committed
1424
1425
            assert not args.squared_relu, ("TransformerEngine does not support squared "
                                           "relu activation.")
liangjing's avatar
v1  
liangjing committed
1426
1427

        self.use_fp8 = args.fp8 is not None
1428
        self.fp8_recipe = None
1429
        self.fp8_group = None
1430
        if self.use_fp8:
liangjing's avatar
v1  
liangjing committed
1431
1432
            assert args.transformer_impl == 'transformer_engine', \
                'transformer-engine required for fp8 training and inference'
xingjinliang's avatar
xingjinliang committed
1433
            self.fp8_group = mpu.get_amax_reduction_group(tp_only_amax_red=config.tp_only_amax_red)
liangjing's avatar
v1  
liangjing committed
1434
            if args.fp8 == "e4m3":
1435
                fp8_format = transformer_engine.common.recipe.Format.E4M3
liangjing's avatar
v1  
liangjing committed
1436
            elif args.fp8 == "hybrid":
1437
                fp8_format = transformer_engine.common.recipe.Format.HYBRID
liangjing's avatar
v1  
liangjing committed
1438
1439
            else:
                raise ValueError("The DelayedScaling recipe only supports E4M3 and HYBRID formats.")
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
            self.fp8_recipe = transformer_engine.common.recipe.DelayedScaling(
                margin=args.fp8_margin,
                interval=args.fp8_interval,
                fp8_format=fp8_format,
                amax_history_len=args.fp8_amax_history_len,
                amax_compute_algo=args.fp8_amax_compute_algo,
                override_linear_precision=(False, False, not args.fp8_wgrad),
            )

        self.num_microbatches_in_previous_step = -1
        self.microbatch_count = 0
liangjing's avatar
v1  
liangjing committed
1451
        self.checkpoint_core_attention = config.recompute_granularity == 'selective'
1452

1453
        # Number of layers.
liangjing's avatar
v1  
liangjing committed
1454
1455
1456
1457
1458
1459
        self.num_layers = _get_num_layers(args, model_type,
                                          layer_type==LayerType.decoder)

        self.drop_path_rates = [
            rate.item() for rate in
            torch.linspace(0, self.drop_path_rate, config.num_layers)]
Mohammad's avatar
Mohammad committed
1460

liangjing's avatar
v1  
liangjing committed
1461
1462
1463
1464
1465
1466
1467
        self.retro_layer_numbers = None
        if model_type == ModelType.retro_decoder:
            retro_layer_start = 6 if config.num_layers <= 15 else 9
            self.retro_layer_numbers = \
                np.arange(retro_layer_start, args.num_layers + 1, 3).tolist()
        if model_type == ModelType.retro_encoder:
            self.retro_layer_numbers = [1]
1468

Mohammad's avatar
Mohammad committed
1469
        # Transformer layers.
liangjing's avatar
v1  
liangjing committed
1470
1471
1472
1473
1474
        if args.retro_add_retriever:
            assert self.recompute_granularity != 'full', \
                "Full recompute not supported for Retro."
            assert args.transformer_impl == 'local', \
                "Transformer engine does not support Retro layers."
Mohammad's avatar
Mohammad committed
1475
        def build_layer(layer_number):
1476
            if args.transformer_impl == 'local':
liangjing's avatar
v1  
liangjing committed
1477
1478
1479
                current_layer_type = _get_layer_type(
                    model_type, layer_type, self.retro_layer_numbers,
                    layer_number)
1480
                return ParallelTransformerLayer(
liangjing's avatar
v1  
liangjing committed
1481
                    config,
1482
                    layer_number,
liangjing's avatar
v1  
liangjing committed
1483
                    layer_type=current_layer_type,
1484
1485
1486
                    self_attn_mask_type=self_attn_mask_type,
                    drop_path_rate=self.drop_path_rates[layer_number - 1])
            else:
liangjing's avatar
v1  
liangjing committed
1487
1488
1489
1490
1491
1492
1493
1494
                # This argument is only available from TE v0.10 onwards.
                extra_transformer_engine_kwargs = {}
                if self.transformer_engine_v_0_8:
                    extra_transformer_engine_kwargs["bias"] = args.add_bias_linear
                if self.transformer_engine_v_0_10:
                    extra_transformer_engine_kwargs["activation"] = "swiglu" if args.swiglu else "gelu"
                if self.transformer_engine_v_0_11:
                    extra_transformer_engine_kwargs["normalization"] = args.normalization
xingjinliang's avatar
xingjinliang committed
1495
1496
1497
1498
1499
                assert config.attention_softmax_in_fp32, "TransformerEngine only supports softmax compute in FP32."
                assert (
                    (bool(int(os.getenv("NVTE_APPLY_QK_LAYER_SCALING", "0"))) and args.fp16) == config.apply_query_key_layer_scaling
                ), ("Unsupported config for apply_query_key_layer_scaling in TransformerEngine. If --apply-query-key-layer-scaling is "
                    "provided, set env-var NVTE_APPLY_QK_LAYER_SCALING=1 and you must be using fp16.")
1500
                return transformer_engine.pytorch.TransformerLayer(
liangjing's avatar
v1  
liangjing committed
1501
1502
1503
1504
1505
1506
1507
1508
                    config.hidden_size,
                    config.ffn_hidden_size,
                    config.num_attention_heads,
                    layernorm_epsilon=config.layernorm_epsilon,
                    hidden_dropout=config.hidden_dropout,
                    attention_dropout=config.attention_dropout,
                    init_method=config.init_method,
                    output_layer_init_method=config.output_layer_init_method,
1509
                    layer_number=layer_number,
liangjing's avatar
v1  
liangjing committed
1510
                    kv_channels=config.kv_channels,
1511
                    self_attn_mask_type=self_attn_mask_type.name,
xingjinliang's avatar
xingjinliang committed
1512
1513
1514
1515
1516
                    tp_group=mpu.get_tensor_model_parallel_group() if mpu.is_initialized() else None,
                    tp_size=mpu.get_tensor_model_parallel_world_size(),
                    get_rng_state_tracker=get_cuda_rng_tracker
                    if get_cuda_rng_tracker().is_initialized()
                    else None,
liangjing's avatar
v1  
liangjing committed
1517
                    fuse_wgrad_accumulation=config.gradient_accumulation_fusion,
1518
1519
                    seq_length=args.seq_length,
                    micro_batch_size=args.micro_batch_size,
liangjing's avatar
v1  
liangjing committed
1520
1521
1522
                    sequence_parallel=config.sequence_parallel,
                    params_dtype=config.params_dtype,
                    apply_residual_connection_post_layernorm=config.apply_residual_connection_post_layernorm,
1523
1524
1525
1526
                    output_layernorm=False,
                    layer_type="encoder",
                    drop_path_rate=self.drop_path_rates[layer_number - 1],
                    set_parallel_mode=True,
liangjing's avatar
v1  
liangjing committed
1527
1528
                    fuse_qkv_params=True,
                    **extra_transformer_engine_kwargs)
1529

liangjing's avatar
v1  
liangjing committed
1530
1531
        if config.virtual_pipeline_model_parallel_size is not None:
            assert config.num_layers % config.virtual_pipeline_model_parallel_size == 0, \
1532
1533
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1534
            assert args.model_type != ModelType.encoder_and_decoder
1535
1536
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
liangjing's avatar
v1  
liangjing committed
1537
            self.num_layers = self.num_layers // config.virtual_pipeline_model_parallel_size
1538
1539
1540
1541
1542
1543
1544
1545
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
1546
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
liangjing's avatar
v1  
liangjing committed
1547
                config.num_layers // config.virtual_pipeline_model_parallel_size) + \
1548
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
1549
        else:
1550
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1551
            if args.model_type == ModelType.encoder_and_decoder and \
1552
1553
                    mpu.get_pipeline_model_parallel_world_size() > 1:
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1554
1555
1556
1557
1558
1559
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
1560
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
1561

1562
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
1563
            # When a standalone embedding stage is used (e.g.,
wangxj's avatar
wangxj committed
1564
            # args.account_for_embedding_in_pipeline_split == True), virtual pipeline ranks
1565
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
1566
1567
1568
1569
1570
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
1571
1572
1573
1574
1575
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
1576

liangjing's avatar
v1  
liangjing committed
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
            # Update dropout rate for Retro encoder.
            if model_type == ModelType.retro_encoder:
                for layer in self.layers:
                    if layer.self_attention.use_flash_attn:
                        layer.self_attention.core_attention_flash.dropout_p = \
                            torch.nn.Dropout(args.retro_encoder_attention_dropout)
                    else:
                        layer.self_attention.core_attention.attention_dropout.p =\
                            args.retro_encoder_attention_dropout
                    layer.hidden_dropout = args.retro_encoder_hidden_dropout

xingjinliang's avatar
xingjinliang committed
1588
        if self.post_process and self.post_norm:
1589
            # Final layer norm before output.
xingjinliang's avatar
xingjinliang committed
1590
            self.final_norm = get_norm(config)
1591

Mohammad's avatar
Mohammad committed
1592
    def _get_layer(self, layer_number):
1593
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
1594

1595
    def _checkpointed_forward(self, hidden_states, attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1596
1597
                              encoder_output, enc_dec_attn_mask,
                              rotary_pos_emb, is_first_microbatch):
1598
        """Forward method with activation checkpointing."""
liangjing's avatar
v1  
liangjing committed
1599
        def custom(start, end):
1600
            def custom_forward(*args, **kwargs):
1601
                x_, *args = args
Mohammad's avatar
Mohammad committed
1602
1603
                for index in range(start, end):
                    layer = self._get_layer(index)
1604
                    x_ = layer(x_, *args, **kwargs)
1605
                return x_
liangjing's avatar
v1  
liangjing committed
1606
1607
1608
1609
1610
1611
1612
            return custom_forward

        te_forward_kwargs = {}
        if self.transformer_impl == 'transformer_engine':
            te_forward_kwargs['is_first_microbatch'] = is_first_microbatch
            if self.transformer_engine_v_0_10:
                te_forward_kwargs['rotary_pos_emb'] = rotary_pos_emb
1613

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1614
        if self.recompute_method == 'uniform':
liangjing's avatar
v1  
liangjing committed
1615
1616
            # Uniformly divide the total number of Transformer layers and
            # checkpoint the input activation of each divided chunk.
1617
1618
1619
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
1620
                if self.transformer_impl == 'transformer_engine':
liangjing's avatar
v1  
liangjing committed
1621
1622
                    hidden_states = transformer_engine.pytorch.checkpoint(
                        custom(l, l + self.recompute_num_layers),
1623
1624
1625
                        self.distribute_saved_activations,
                        tensor_parallel.get_cuda_rng_tracker,
                        mpu.get_tensor_model_parallel_group(),
Mostofa Patwary's avatar
Mostofa Patwary committed
1626
                        hidden_states, attention_mask, encoder_output,
liangjing's avatar
v1  
liangjing committed
1627
                        enc_dec_attn_mask, **te_forward_kwargs)
1628
1629
1630
1631
                else:
                    hidden_states = tensor_parallel.checkpoint(
                        custom(l, l + self.recompute_num_layers),
                        self.distribute_saved_activations,
liangjing's avatar
v1  
liangjing committed
1632
1633
1634
                        hidden_states, attention_mask,
                        encoder_output, enc_dec_attn_mask,
                        None, None, None, None, rotary_pos_emb)
1635

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1636
                l += self.recompute_num_layers
1637

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1638
        elif self.recompute_method == 'block':
1639
1640
1641
1642
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1643
                if l < self.recompute_num_layers:
1644
                    if self.transformer_impl == 'transformer_engine':
liangjing's avatar
v1  
liangjing committed
1645
1646
                        hidden_states = transformer_engine.pytorch.checkpoint(
                            custom(l, l + 1),
1647
1648
1649
                            self.distribute_saved_activations,
                            tensor_parallel.get_cuda_rng_tracker,
                            mpu.get_tensor_model_parallel_group(),
Mostofa Patwary's avatar
Mostofa Patwary committed
1650
                            hidden_states, attention_mask, encoder_output,
liangjing's avatar
v1  
liangjing committed
1651
                            enc_dec_attn_mask, **te_forward_kwargs)
1652
1653
1654
1655
                    else:
                        hidden_states = tensor_parallel.checkpoint(
                            custom(l, l + 1),
                            self.distribute_saved_activations,
liangjing's avatar
v1  
liangjing committed
1656
1657
1658
                            hidden_states, attention_mask,
                            encoder_output, enc_dec_attn_mask,
                            None, None, None, None, rotary_pos_emb)
1659
                else:
1660
                    if self.transformer_impl == 'transformer_engine':
liangjing's avatar
v1  
liangjing committed
1661
                        hidden_states = custom(l, l + 1)(
Mostofa Patwary's avatar
Mostofa Patwary committed
1662
                            hidden_states, attention_mask, encoder_output,
liangjing's avatar
v1  
liangjing committed
1663
                            enc_dec_attn_mask, **te_forward_kwargs)
1664
1665
                    else:
                        hidden_states = custom(l, l + 1)(
liangjing's avatar
v1  
liangjing committed
1666
1667
1668
                            hidden_states, attention_mask,
                            encoder_output, enc_dec_attn_mask,
                            None, None, None, None, rotary_pos_emb)
1669
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1670
            raise ValueError("Invalid activation recompute method.")
1671
1672
1673

        return hidden_states

1674
    def set_input_tensor(self, input_tensor):
1675
1676
1677
1678
1679
1680
1681
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
1682
1683
        self.input_tensor = input_tensor

1684
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
1685
                encoder_output=None, enc_dec_attn_mask=None,
liangjing's avatar
v1  
liangjing committed
1686
1687
1688
1689
1690
                retriever_input=None,
                retriever_output=None,
                retriever_attn_mask=None,
                inference_params=None,
                rotary_pos_emb=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1691
1692
        # hidden_states: [s, b, h]

1693
        # Checks.
mshoeybi's avatar
mshoeybi committed
1694
        if inference_params:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1695
            assert self.recompute_granularity is None, \
1696
                'inference does not work with activation checkpointing'
1697

1698
        if not self.pre_process:
1699
            # See set_input_tensor()
1700
            hidden_states = self.input_tensor
1701

1702
1703
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
1704
1705
1706
1707
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
1708
1709
1710
1711
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
1712
        #
1713
1714
1715
1716
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
1717
        hidden_states = core.utils.make_viewless_tensor(
1718
            hidden_states,
1719
1720
            requires_grad=True,
            keep_graph=True,
1721
1722
        )

liangjing's avatar
v1  
liangjing committed
1723
        # RNG context.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1724
        if self.sequence_parallel:
1725
            rng_context = tensor_parallel.get_cuda_rng_tracker().fork()
1726
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1727
            rng_context = nullcontext()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1728

liangjing's avatar
v1  
liangjing committed
1729
        # Forward layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1730
        with rng_context:
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
            # The fp8_autocast context manager is a no-op when enabled=True
            # The if...else serves to short circuit name resolution for fp8_autocast
            with transformer_engine.pytorch.fp8_autocast(
                enabled=self.use_fp8,
                fp8_recipe=self.fp8_recipe,
                fp8_group=self.fp8_group
            ) if self.use_fp8 else nullcontext():
                # Determine if the current iteration is first microbatch
                if self.num_microbatches_in_previous_step != get_num_microbatches():
                    self.microbatch_count = 0 # Reset count on new batch size rampup interval
                self.num_microbatches_in_previous_step = get_num_microbatches()
                is_first_microbatch = self.microbatch_count % get_num_microbatches() == 0

                # Forward pass.
                if self.recompute_granularity == 'full':
                    hidden_states = self._checkpointed_forward(hidden_states,
                                                               attention_mask,
                                                               encoder_output,
                                                               enc_dec_attn_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1750
                                                               rotary_pos_emb,
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
                                                               is_first_microbatch)
                else:
                    forward_kwargs = {
                        'encoder_output': encoder_output,
                        'enc_dec_attn_mask': enc_dec_attn_mask,
                        'inference_params': inference_params,
                    }

                    if self.transformer_impl == 'transformer_engine':
                        forward_kwargs['is_first_microbatch'] = is_first_microbatch
                        forward_kwargs['checkpoint_core_attention'] = self.checkpoint_core_attention
liangjing's avatar
v1  
liangjing committed
1762
1763
1764
1765
1766
1767
1768
                        if self.transformer_engine_v_0_10:
                            forward_kwargs['rotary_pos_emb'] = rotary_pos_emb
                    else:
                        forward_kwargs['rotary_pos_emb'] = rotary_pos_emb
                        forward_kwargs['retriever_input'] = retriever_input
                        forward_kwargs['retriever_output'] = retriever_output
                        forward_kwargs['retriever_attn_mask'] = retriever_attn_mask
1769
1770
1771
1772
1773
1774
1775
1776
1777

                    for index in range(self.num_layers):
                        layer = self._get_layer(index)

                        hidden_states = layer(
                            hidden_states,
                            attention_mask,
                            **forward_kwargs)

liangjing's avatar
v1  
liangjing committed
1778
1779
1780
1781
1782
1783
1784
1785
                        # First Retro decoder layer returns both hidden_states
                        # and retriever_output. Make retriever_output available
                        # to subsequence Retro layers.
                        if isinstance(hidden_states, tuple):
                            assert len(hidden_states) == 2
                            hidden_states, retriever_output = hidden_states
                            forward_kwargs["retriever_output"] = retriever_output

1786
1787
1788
                # Skip counter update for eval and activation checkpointing
                if torch.is_grad_enabled() and self.training:
                    self.microbatch_count += 1
mshoeybi's avatar
mshoeybi committed
1789

1790
        # Final layer norm.
xingjinliang's avatar
xingjinliang committed
1791
1792
        if self.post_process and self.post_norm:
            hidden_states = self.final_norm(hidden_states)
1793

1794
        return hidden_states
xingjinliang's avatar
xingjinliang committed
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809

    def load_state_dict(self, state_dict, strict=True):
        """Customize load."""

        # Handle renaming layernorm -> norm in component names
        state_dict_ = {}
        for key in state_dict.keys():
            # Bypass TransformerEngine module parameters.
            if "layernorm_qkv" in key or "layernorm_mlp" in key:
                state_dict_[key] = state_dict[key]
                continue
            newkey = key.replace("layernorm", "norm")
            state_dict_[newkey] = state_dict[key]

        super().load_state_dict(state_dict_, strict)