transformer.py 76.7 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
3

"""Transformer."""
liangjing's avatar
v1  
liangjing committed
4
import math
xingjinliang's avatar
xingjinliang committed
5
6
7
8
import os
from contextlib import nullcontext
from typing import Optional

liangjing's avatar
v1  
liangjing committed
9
import numpy as np
10
import torch
11
import torch.nn.functional as F
12

xingjinliang's avatar
xingjinliang committed
13
from megatron import core
14
from megatron.core import mpu, tensor_parallel
15
from megatron.core.enums import ModelType
xingjinliang's avatar
xingjinliang committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from megatron.legacy.model.enums import AttnMaskType, LayerType, AttnType
from megatron.legacy.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.legacy.model.fused_bias_gelu import bias_gelu_impl
from megatron.core.models.common.embeddings import apply_rotary_pos_emb
from megatron.core.jit import jit_fuser
from megatron.core.num_microbatches_calculator import get_num_microbatches
from megatron.core.parallel_state import (
    get_expert_tensor_and_model_parallel_group,
    get_tensor_model_parallel_group,
)
from megatron.core.tensor_parallel import (
    gather_from_sequence_parallel_region,
    reduce_scatter_to_sequence_parallel_region,
    get_cuda_rng_tracker,
    get_data_parallel_rng_tracker_name,
)
from megatron.legacy.model.enums import AttnMaskType, AttnType, LayerType
from megatron.legacy.model.fused_bias_gelu import bias_gelu_impl
from megatron.legacy.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.legacy.model.utils import (
    attention_mask_func,
    erf_gelu,
    get_norm,
    openai_gelu,
)
from megatron.training import get_args, get_timers

from .module import MegatronModule
44

45
46
47
48
49
50
51
52
try:
    from einops import rearrange
except ImportError:
    rearrange = None

try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_func
except ImportError:
liangjing's avatar
v1  
liangjing committed
53
    try:
xingjinliang's avatar
xingjinliang committed
54
55
56
        from flash_attn.flash_attn_interface import (
            flash_attn_varlen_func as flash_attn_unpadded_func,
        )
liangjing's avatar
v1  
liangjing committed
57
58
    except ImportError:
        flash_attn_unpadded_func = None
59

60
61
62
63
64
65
66
67
68
69
""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
70
    Transformer takes input of size [s, b, h] and returns a
71
72
73
74
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

75
class DropPath(MegatronModule):
76
    """Drop paths (Stochastic Depth) per sample
77
78
79
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
80
    def __init__(self, drop_prob=0.):
81
82
83
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
84
    def forward(self, hidden_state):
85
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
86
            return hidden_state
87
88
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
89
90
        # hidden_state: [s, b, h]
        shape = (1,) + (hidden_state.shape[1],) + (1,) * (hidden_state.ndim - 2)
91
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
92
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
93
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
94
        output = hidden_state.div(keep_prob) * random_tensor
95
96
        return output

97
98
99
100
101
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
102
    state back into h hidden dimension.
103
104
    """

xingjinliang's avatar
xingjinliang committed
105
    def __init__(self, config, is_expert=False):
106
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
107
        args = get_args()
108

liangjing's avatar
v1  
liangjing committed
109
110
111
112
113
        self.add_bias = config.add_bias_linear

        ffn_hidden_size = config.ffn_hidden_size
        if config.gated_linear_unit:
            ffn_hidden_size *= 2
114

115
        # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
116
        self.dense_h_to_4h = tensor_parallel.ColumnParallelLinear(
liangjing's avatar
v1  
liangjing committed
117
118
119
120
            config.hidden_size,
            ffn_hidden_size,
            config=config,
            init_method=config.init_method,
121
            bias=self.add_bias,
122
            gather_output=False,
123
            skip_bias_add=True,
xingjinliang's avatar
xingjinliang committed
124
            is_expert=is_expert,
liangjing's avatar
v1  
liangjing committed
125
        )
126

127
128
129
130
        self.bias_gelu_fusion = False
        self.activation_func = None
        self.swiglu = args.swiglu

131
132
133
134
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
135
136
137
138
139
140
141
142
143
144
145
146
        elif args.swiglu:
            def swiglu(x):
                x = torch.chunk(x, 2, dim=-1)
                return F.silu(x[0]) * x[1]
            self.activation_func = swiglu
        elif args.squared_relu:
            def squared_relu(x):
                return torch.pow(F.relu(x), 2)
            self.activation_func = squared_relu
        else:
            self.bias_gelu_fusion = args.bias_gelu_fusion
            self.activation_func = F.gelu
147
148

        # Project back to h.
149
        self.dense_4h_to_h = tensor_parallel.RowParallelLinear(
liangjing's avatar
v1  
liangjing committed
150
151
152
153
            config.ffn_hidden_size,
            config.hidden_size,
            config=config,
            init_method=config.output_layer_init_method,
154
            bias=self.add_bias,
xingjinliang's avatar
xingjinliang committed
155
156
157
            skip_bias_add=True,
            input_is_parallel=True,
            is_expert=is_expert,
liangjing's avatar
v1  
liangjing committed
158
        )
159

160
161
    def forward(self, hidden_states):

162
163
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
164

165
        if self.bias_gelu_fusion:
166
167
168
            assert self.add_bias is True
            assert self.activation_func == F.gelu
            intermediate_parallel = bias_gelu_impl(intermediate_parallel, bias_parallel)
169
        else:
Jared Casper's avatar
Jared Casper committed
170
            if bias_parallel is not None:
171
172
                intermediate_parallel = intermediate_parallel + bias_parallel
            intermediate_parallel = self.activation_func(intermediate_parallel)
173
174
175
176

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
177

xingjinliang's avatar
xingjinliang committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
def sinkhorn(cost, tol=0.0001):
    cost = torch.exp(cost)
    d0 = torch.ones(cost.size(0), device=cost.device, dtype=cost.dtype)
    d1 = torch.ones(cost.size(1), device=cost.device, dtype=cost.dtype)

    eps = 0.00000001
    error = 1e9
    d1_old = d1
    while error > tol:
        d0 = (1/d0.size(0))*1/(torch.sum(d1*cost,1) + eps)
        d1 = (1/d1.size(0))*1/(torch.sum(d0.unsqueeze(1)*cost,0)+eps)
        error = torch.mean(torch.abs(d1_old-d1))
        d1_old = d1
    return d1*cost*d0.unsqueeze(1)


def get_router_linear_layer(config):
    args = get_args()
    router = torch.nn.Linear(args.hidden_size, args.num_experts, bias=False)
    with get_cuda_rng_tracker().fork(get_data_parallel_rng_tracker_name()):
        config.init_method(router.weight)
    setattr(router.weight, 'sequence_parallel',config.sequence_parallel)
    return router


rprenger's avatar
rprenger committed
203
204
205
206
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
liangjing's avatar
v1  
liangjing committed
207
    def __init__(self, config):
rprenger's avatar
rprenger committed
208
209
        super(SwitchMLP, self).__init__()
        args = get_args()
xingjinliang's avatar
xingjinliang committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        self.router = get_router_linear_layer(config)
        self.expert_parallel_size = mpu.get_expert_model_parallel_world_size()
        self.sequence_parallel = config.sequence_parallel
        self.add_bias = config.add_bias_linear

        assert args.num_experts % self.expert_parallel_size == 0
        self.num_local_experts = args.num_experts // self.expert_parallel_size
        local_expert_indices_offset = mpu.get_expert_model_parallel_rank() * self.num_local_experts
        self.local_expert_indices = [local_expert_indices_offset + i for i in range(self.num_local_experts)]

        self.local_experts = torch.nn.ModuleList()
        for i in range(self.num_local_experts):
            self.local_experts.append(ParallelMLP(config, is_expert=True))

        self.tp_ep_group = get_expert_tensor_and_model_parallel_group()

    def gather_indices(self, local_indices):
        """ Gather tensors and concatinate along the first dimension."""
        world_size = torch.distributed.get_world_size(group=self.tp_ep_group)
        # Bypass the function if we are using only 1 GPU.
        if world_size == 1:
            return local_indices

        dim_size = list(local_indices.size())
        dim_size[0] = dim_size[0] * world_size

        # TODO pre allocate memory
        output = torch.empty(dim_size, dtype=local_indices.dtype,
                             device=torch.cuda.current_device())
        torch.distributed._all_gather_base(
            output, local_indices.contiguous(), group=self.tp_ep_group
        )
        return output
243

rprenger's avatar
rprenger committed
244
    def forward(self, hidden_states):
xingjinliang's avatar
xingjinliang committed
245
246
        # hidden_states: [b, s, h]
        args = get_args()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
247
248
        s = hidden_states.size(0)
        b = hidden_states.size(1)
rprenger's avatar
rprenger committed
249
        h = hidden_states.size(2)
xingjinliang's avatar
xingjinliang committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        route = self.router(hidden_states).view(-1, args.num_experts)

        # TODO (rprenger) Right now we're just using the sinkhorn algorithm
        # for load balancing. There should be an option to do no load balancing
        # and the algorithm and parametets should be further tested
        if self.training:
            with torch.no_grad():
                sinkroute = sinkhorn(route.detach().to(dtype=torch.float32))
                _, max_ind = torch.max(sinkroute, dim=1)
            route = torch.sigmoid(route)
            max_prob = route[torch.arange(route.size(0)), max_ind]
        else:
            route = torch.sigmoid(route)
            max_prob, max_ind = torch.max(route, dim=1)

        max_prob = torch.unsqueeze(max_prob, 1)
        hidden_states = hidden_states.view(-1, hidden_states.size(2))
267

rprenger's avatar
rprenger committed
268
        # TODO (rprenger) TODO this could be made easier to read
Vijay Korthikanti's avatar
Vijay Korthikanti committed
269
        # Converting [s, b, h] to [s*b, h].
270
        # Each vector could be routed differently
xingjinliang's avatar
xingjinliang committed
271
272
273
274
275
276
277
        if self.sequence_parallel or (self.expert_parallel_size > 1):
            global_hidden_states = \
                gather_from_sequence_parallel_region(hidden_states, group=self.tp_ep_group)
            global_indices = self.gather_indices(max_ind)
        else:
            global_hidden_states = hidden_states
            global_indices = max_ind
rprenger's avatar
rprenger committed
278

xingjinliang's avatar
xingjinliang committed
279
280
281
        output_total = torch.zeros_like(global_hidden_states)
        if self.add_bias:
            output_bias_total = torch.zeros_like(global_hidden_states)
282

xingjinliang's avatar
xingjinliang committed
283
284
285
286
        for expert_num, expert in enumerate(self.local_experts):
            local_expert_index = self.local_expert_indices[expert_num]
            local_indices = (global_indices == local_expert_index).nonzero()
            hidden = global_hidden_states[local_indices, :]
rprenger's avatar
rprenger committed
287
            output, output_bias = expert(hidden)
xingjinliang's avatar
xingjinliang committed
288
289
            output_total[local_indices, :] = output
            if self.add_bias:
liangjing's avatar
v1  
liangjing committed
290
                output_bias = output_bias.expand_as(output)
xingjinliang's avatar
xingjinliang committed
291
292
293
294
295
296
297
298
299
300
301
302
303
                output_bias_total[local_indices, :] = output_bias

        if self.sequence_parallel or (self.expert_parallel_size > 1):
            output_total = \
                reduce_scatter_to_sequence_parallel_region(output_total, group=self.tp_ep_group)
            if self.add_bias:
                output_bias_total = \
                    reduce_scatter_to_sequence_parallel_region(output_bias_total, group=self.tp_ep_group)

                # bias is duplicated across tensor parallelism ranks;
                # reduce scatter reduces bias across tensor parallel_ranks
                output_bias_total = \
                    output_bias_total/mpu.get_tensor_model_parallel_world_size()
304

rprenger's avatar
rprenger committed
305
        output_total = output_total*max_prob
Vijay Korthikanti's avatar
Vijay Korthikanti committed
306
        output_total = output_total.view(s, b, h)
xingjinliang's avatar
xingjinliang committed
307
        if self.add_bias:
liangjing's avatar
v1  
liangjing committed
308
309
310
311
            output_bias_total = output_bias_total*max_prob
            output_bias_total = output_bias_total.view(s, b, h)
        else:
            output_bias_total = None
rprenger's avatar
rprenger committed
312
313

        return output_total, output_bias_total
314

315
316

class CoreAttention(MegatronModule):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
317

liangjing's avatar
v1  
liangjing committed
318
    def __init__(self, layer_number, config,
319
320
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
liangjing's avatar
v1  
liangjing committed
321
322
        self.fp16 = config.fp16
        self.bf16 = config.bf16
323

liangjing's avatar
v1  
liangjing committed
324
325
        self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
326
327
328
329
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
liangjing's avatar
v1  
liangjing committed
330
        self.sequence_parallel = config.sequence_parallel
331

liangjing's avatar
v1  
liangjing committed
332
        projection_size = config.kv_channels * config.num_attention_heads
333
334

        # Per attention head and per partition values.
335
        world_size = mpu.get_tensor_model_parallel_world_size()
336
337
338
        self.hidden_size_per_partition = core.utils.divide(projection_size,
                                                           world_size)
        self.hidden_size_per_attention_head = core.utils.divide(
liangjing's avatar
v1  
liangjing committed
339
            projection_size, config.num_attention_heads)
340
        self.num_attention_heads_per_partition = core.utils.divide(
liangjing's avatar
v1  
liangjing committed
341
            config.num_attention_heads, world_size)
342
343
344
345
346
347
348
349
350
351

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
liangjing's avatar
v1  
liangjing committed
352
            config.masked_softmax_fusion,
353
354
355
356
357
358
359
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
liangjing's avatar
v1  
liangjing committed
360
        self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
liangjing's avatar
v1  
liangjing committed
376
377
        query_layer = query_layer.reshape(output_size[2],
                                          output_size[0] * output_size[1], -1)
378
379
380
381
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
382
        # preallocting input tensor: [b * np, sq, sk]
383
        matmul_input_buffer = mpu.get_global_memory_buffer().get_tensor(
384
            (output_size[0]*output_size[1], output_size[2], output_size[3]),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
385
            query_layer.dtype, "mpu")
386
387
388

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
389
            matmul_input_buffer,
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
407
        if not self.sequence_parallel:
408
            with tensor_parallel.get_cuda_rng_tracker().fork():
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
                attention_probs = self.attention_dropout(attention_probs)
        else:
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
class FlashSelfAttention(torch.nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
                 device=None, dtype=None):
        super().__init__()
        assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
                                                      'e.g., with pip install flash-attn')
        assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, q, k, v):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
        """
Jimmy Zhang's avatar
Jimmy Zhang committed
477
478
479

        assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v)))
        assert all((i.is_cuda for i in (q,k,v)))
Jimmy Zhang's avatar
Jimmy Zhang committed
480
481

        batch_size, seqlen_q = q.shape[0], q.shape[1]
Jimmy Zhang's avatar
Jimmy Zhang committed
482
        seqlen_k = k.shape[1]
Jimmy Zhang's avatar
Jimmy Zhang committed
483

Jimmy Zhang's avatar
Jimmy Zhang committed
484
485
        q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
        cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
Jimmy Zhang's avatar
Jimmy Zhang committed
486
487
                                    device=q.device)

Jimmy Zhang's avatar
Jimmy Zhang committed
488
489
490
491
492
493
        if self.training:
            # during training q,k,v always have same seqlen
            assert seqlen_k == seqlen_q

            is_causal = self.causal
            cu_seqlens_k = cu_seqlens_q
liangjing's avatar
v1  
liangjing committed
494
            dropout_p = self.dropout_p
Jimmy Zhang's avatar
Jimmy Zhang committed
495
        else:
Jimmy Zhang's avatar
Jimmy Zhang committed
496
            # turn off FA causal mask after first inference autoregressive iteration
Jimmy Zhang's avatar
Jimmy Zhang committed
497
            # only on first autoregressive step q,k,v have same seqlen
Jimmy Zhang's avatar
Jimmy Zhang committed
498
499
            is_causal = seqlen_q == seqlen_k
            cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
Jimmy Zhang's avatar
Jimmy Zhang committed
500
                        device=q.device)
liangjing's avatar
v1  
liangjing committed
501
            dropout_p = 0
Jimmy Zhang's avatar
Jimmy Zhang committed
502

Jimmy Zhang's avatar
Jimmy Zhang committed
503
504
        output = flash_attn_unpadded_func(
            q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
liangjing's avatar
v1  
liangjing committed
505
            dropout_p,
Jimmy Zhang's avatar
Jimmy Zhang committed
506
507
            softmax_scale=self.softmax_scale, causal=is_causal
        )
Jimmy Zhang's avatar
Jimmy Zhang committed
508

509
510
511
512
        output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
        return output


513
class ParallelAttention(MegatronModule):
514
515
    """Parallel self-attention layer abstract class.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
516
    Self-attention layer takes input with size [s, b, h]
517
518
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
519

liangjing's avatar
v1  
liangjing committed
520
    def __init__(self, config, layer_number,
521
522
523
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
524
        args = get_args()
525
        self.layer_number = max(1, layer_number)
526
527
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
liangjing's avatar
v1  
liangjing committed
528
529
        self.params_dtype = config.params_dtype
        self.sequence_parallel = config.sequence_parallel
xingjinliang's avatar
xingjinliang committed
530
        self.config = config
liangjing's avatar
v1  
liangjing committed
531
532
533
534
535
536
537
538
        self.group_query_attention = args.group_query_attention
        self.num_query_groups = args.num_query_groups

        query_projection_size = config.kv_channels * config.num_attention_heads
        if self.group_query_attention:
            kv_projection_size = args.kv_channels * args.num_query_groups
        else:
            kv_projection_size = args.kv_channels * args.num_attention_heads
539

liangjing's avatar
v1  
liangjing committed
540
541
542
        self.use_flash_attn = args.use_flash_attn \
            and attention_type == AttnType.self_attn \
            and self.attn_mask_type == AttnMaskType.causal
543
544
545
546
547
548
549
550
551
552
        if self.use_flash_attn:
            if flash_attn_unpadded_func is None:
                raise ImportError('FlashAttention is not installed, please install with '
                                  'pip install flash-attn')
            assert attention_type == AttnType.self_attn, ('FlashAttention code path only supports '
                                                          'self-attention for now')
            assert self.attn_mask_type == AttnMaskType.causal, ('FlashAttention code path only '
                                                                'supports causal mask for now')
            if rearrange is None:
                raise ImportError('einops is not installed, please install with pip install einops')
553

554
        # Per attention head and per partition values.
555
        world_size = mpu.get_tensor_model_parallel_world_size()
556
        self.hidden_size_per_attention_head = core.utils.divide(
liangjing's avatar
v1  
liangjing committed
557
            query_projection_size, config.num_attention_heads)
558
        self.num_attention_heads_per_partition = core.utils.divide(
liangjing's avatar
v1  
liangjing committed
559
560
561
562
563
564
565
566
567
568
            config.num_attention_heads, world_size)

        if self.group_query_attention:
            if args.num_query_groups % world_size != 0:
                raise NotImplementedError('Currently the num_query_groups should be '
                                          'a multiple of the tensor parallel size')
            self.num_query_groups_per_partition = core.utils.divide(
                        args.num_query_groups, world_size)
        else:
            self.num_query_groups_per_partition = self.num_attention_heads_per_partition
569
570

        # Strided linear layer.
571
        if attention_type == AttnType.self_attn:
572
            self.query_key_value = tensor_parallel.ColumnParallelLinear(
liangjing's avatar
v1  
liangjing committed
573
574
575
576
                config.hidden_size,
                query_projection_size + 2 * kv_projection_size,
                config=config,
                init_method=config.init_method,
xingjinliang's avatar
xingjinliang committed
577
                bias=args.add_bias_linear or args.add_qkv_bias,
liangjing's avatar
v1  
liangjing committed
578
                gather_output=False)
579
580
581
        else:
            assert attention_type == AttnType.cross_attn

liangjing's avatar
v1  
liangjing committed
582
583
584
            if self.group_query_attention:
                raise NotImplementedError("Grouped query attention not implemented for cross-attention.")
            assert query_projection_size == kv_projection_size
585

liangjing's avatar
v1  
liangjing committed
586
587
588
589
590
591
592
            self.query = tensor_parallel.ColumnParallelLinear(
                config.hidden_size,
                query_projection_size,
                config=config,
                init_method=config.init_method,
                bias=config.add_bias_linear,
                gather_output=False)
593

liangjing's avatar
v1  
liangjing committed
594
595
596
597
598
599
600
601
602
            self.key_value = tensor_parallel.ColumnParallelLinear(
                config.hidden_size,
                2 * kv_projection_size,
                config=config,
                init_method=config.init_method,
                bias=config.add_bias_linear,
                gather_output=False)

        self.core_attention = CoreAttention(self.layer_number, config,
603
                                            self.attn_mask_type)
liangjing's avatar
v1  
liangjing committed
604
        self.checkpoint_core_attention = config.recompute_granularity == 'selective'
605

606
607
        if self.use_flash_attn:
            self.core_attention_flash = FlashSelfAttention(
liangjing's avatar
v1  
liangjing committed
608
                causal=True, attention_dropout=config.attention_dropout
609
610
            )

611
        # Output.
612
        self.dense = tensor_parallel.RowParallelLinear(
liangjing's avatar
v1  
liangjing committed
613
614
615
616
            query_projection_size,
            config.hidden_size,
            config=config,
            init_method=config.output_layer_init_method,
617
            bias=args.add_bias_linear,
618
            input_is_parallel=True,
liangjing's avatar
v1  
liangjing committed
619
            skip_bias_add=True)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
620

621
    def _checkpointed_attention_forward(self, query_layer, key_layer,
Mostofa Patwary's avatar
Mostofa Patwary committed
622
623
                                        value_layer, attention_mask,
                                        rotary_pos_emb=None):
624
625
626
627
628
629
630
631
632
633
        """Forward method with activation checkpointing."""
        def custom_forward(*inputs):
            query_layer = inputs[0]
            key_layer = inputs[1]
            value_layer = inputs[2]
            attention_mask = inputs[3]
            output_ = self.core_attention(query_layer, key_layer,
                                          value_layer, attention_mask)
            return output_

Mostofa Patwary's avatar
Mostofa Patwary committed
634
635
636
        q_pos_emb, k_pos_emb = (None, None) if rotary_pos_emb is None \
            else rotary_pos_emb

637
        hidden_states = tensor_parallel.checkpoint(
638
            custom_forward,
Mostofa Patwary's avatar
Mostofa Patwary committed
639
640
            False, query_layer, key_layer, value_layer, attention_mask,
            q_pos_emb, k_pos_emb)
641
642

        return hidden_states
643

liangjing's avatar
v1  
liangjing committed
644
    def _allocate_memory(self, inference_max_sequence_len, batch_size, num_attention_heads):
645
646
647
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
liangjing's avatar
v1  
liangjing committed
648
            num_attention_heads,
649
650
651
652
653
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())

    def forward(self, hidden_states, attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
654
655
                encoder_output=None, inference_params=None,
                rotary_pos_emb=None):
656
        # hidden_states: [sq, b, h]
657

658
659
660
        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
Mostofa Patwary's avatar
Mostofa Patwary committed
661
        is_first_step = False
mshoeybi's avatar
mshoeybi committed
662
        if inference_params:
663
            if self.layer_number not in inference_params.key_value_memory_dict:
liangjing's avatar
v1  
liangjing committed
664
                inf_max_seq_len = inference_params.max_sequence_length
mshoeybi's avatar
mshoeybi committed
665
                inf_max_batch_size = inference_params.max_batch_size
666
                inference_key_memory = self._allocate_memory(
liangjing's avatar
v1  
liangjing committed
667
668
                    inf_max_seq_len, inf_max_batch_size,
                    self.num_query_groups_per_partition)
669
                inference_value_memory = self._allocate_memory(
liangjing's avatar
v1  
liangjing committed
670
671
672
                    inf_max_seq_len, inf_max_batch_size,
                    self.num_query_groups_per_partition)

673
674
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
Mostofa Patwary's avatar
Mostofa Patwary committed
675
                is_first_step = True
676
677
678
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
679

680
681
682
        # =====================
        # Query, Key, and Value
        # =====================
683
        if self.attention_type == AttnType.self_attn:
xingjinliang's avatar
xingjinliang committed
684

liangjing's avatar
v1  
liangjing committed
685
            # Attention heads [sq, b, h] --> [sq, b, ng * (np/ng + 2) * hn)]
686
687
            mixed_x_layer, _ = self.query_key_value(hidden_states)

liangjing's avatar
v1  
liangjing committed
688
689
690
691
692
693
694
695
            # [sq, b, hp] --> [sq, b, ng, (np/ng + 2) * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + (
                self.num_query_groups_per_partition,
                (
                    (self.num_attention_heads_per_partition // self.num_query_groups_per_partition + 2)
                    * self.hidden_size_per_attention_head
                ),
            )
696
697
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

liangjing's avatar
v1  
liangjing committed
698
            # [sq, b, ng, (np/ng + 2) * hn] --> [sq, b, ng, np/ng * hn], [sq, b, ng, hn], [sq, b, ng, hn]
699
            (query_layer,
liangjing's avatar
v1  
liangjing committed
700
701
702
703
704
705
706
707
708
709
710
711
            key_layer,
            value_layer) = torch.split(
                mixed_x_layer,
                [
                    (
                        self.num_attention_heads_per_partition // self.num_query_groups_per_partition
                        * self.hidden_size_per_attention_head
                    ),
                    self.hidden_size_per_attention_head,
                    self.hidden_size_per_attention_head
                ],
                dim=3)
xingjinliang's avatar
xingjinliang committed
712

liangjing's avatar
v1  
liangjing committed
713
714
            # [sq, b, ng, np/ng * hn] -> [sq, b, np, hn] -
            query_layer = query_layer.view(query_layer.size(0), query_layer.size(1), -1, self.hidden_size_per_attention_head)
715
716
717
718
719
720
721
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
liangjing's avatar
v1  
liangjing committed
722
                2 * self.hidden_size_per_attention_head)
723
724
725
726
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
liangjing's avatar
v1  
liangjing committed
727
            value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_kv_layer, 2)
728
729
730
731
732
733

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
liangjing's avatar
v1  
liangjing committed
734
                self.hidden_size_per_attention_head)
735
            query_layer = query_layer.view(*new_tensor_shape)
736

mshoeybi's avatar
mshoeybi committed
737
738
739
        # ==================================
        # Adjust key and value for inference
        # ==================================
740

Mostofa Patwary's avatar
Mostofa Patwary committed
741
742
        # duplicate the pos_emb for self attention
        if rotary_pos_emb is not None:
Mostofa Patwary's avatar
Mostofa Patwary committed
743
744
745
746
            if isinstance(rotary_pos_emb, tuple):
                rotary_pos_emb = rotary_pos_emb
            else:
                rotary_pos_emb = ((rotary_pos_emb,) * 2)
Mostofa Patwary's avatar
Mostofa Patwary committed
747

mshoeybi's avatar
mshoeybi committed
748
        if inference_params:
mshoeybi's avatar
mshoeybi committed
749
750
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
751
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
752
753
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
754
            assert sequence_end <= inference_key_memory.size(0)
755
            # Copy key and values.
756
757
758
759
760
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
761
                :sequence_end, batch_start:batch_end, ...]
762
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
763
                :sequence_end, batch_start:batch_end, ...]
764

Mostofa Patwary's avatar
Mostofa Patwary committed
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785

            # adjust the key rotary positional embedding
            if rotary_pos_emb is not None:
                q_pos_emb, k_pos_emb = rotary_pos_emb
                # need to cross check this condition during inference
                # if not set_inference_key_value_memory:
                if not is_first_step:
                    # In inference, we compute one token at a time.
                    # Select the correct positional embedding
                    # (only the last token in the sequence)
                    q_pos_emb = q_pos_emb[sequence_end - 1 : sequence_end]
                else:
                    # In the first forward pass of inference,
                    # we use the entire provided prefix.
                    # q_pos_emb here has the rope embeddings of the entire
                    # prefix + to-be-generated output so
                    # we slice to just the prefix.
                    q_pos_emb = q_pos_emb[:sequence_end, :, :, :]
                k_pos_emb = k_pos_emb[:sequence_end, :, :, :]
                rotary_pos_emb = (q_pos_emb, k_pos_emb)

786
787
788
        # ==================================
        # core attention computation
        # ==================================
789

liangjing's avatar
v1  
liangjing committed
790
        # expand the key_layer and value_layer [sk, b, ng, hn] -> [sk, b, np, hn]
xingjinliang's avatar
xingjinliang committed
791
792
793
794
795
796
797
798
799
        if self.num_attention_heads_per_partition // self.num_query_groups_per_partition > 1:
            key_layer = key_layer.repeat_interleave(
                self.num_attention_heads_per_partition // self.num_query_groups_per_partition,
                dim = 2
            )
            value_layer = value_layer.repeat_interleave(
                self.num_attention_heads_per_partition // self.num_query_groups_per_partition,
                dim = 2
            )
liangjing's avatar
v1  
liangjing committed
800

Mostofa Patwary's avatar
Mostofa Patwary committed
801
802
803
        # apply relative positional encoding (rotary embedding)
        if rotary_pos_emb is not None:
            q_pos_emb, k_pos_emb = rotary_pos_emb
xingjinliang's avatar
xingjinliang committed
804
805
            query_layer = apply_rotary_pos_emb(query_layer, q_pos_emb,self.config)
            key_layer = apply_rotary_pos_emb(key_layer, k_pos_emb,self.config)
Mostofa Patwary's avatar
Mostofa Patwary committed
806
807
808
809
810
            # TODO, can apply positional embedding to value_layer so it has
            # absolute positional embedding.
            # otherwise, only relative positional embedding takes effect
            # value_layer = apply_rotary_pos_emb(value_layer, k_pos_emb)

811
812
813
814
815
816
817
        if not self.use_flash_attn:
            if self.checkpoint_core_attention:
                context_layer = self._checkpointed_attention_forward(
                    query_layer, key_layer, value_layer, attention_mask)
            else:
                context_layer = self.core_attention(
                    query_layer, key_layer, value_layer, attention_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
818
        else:
819
820
821
822
823
824
825
826
            q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous()
                       for x in (query_layer, key_layer, value_layer)]
            if not self.sequence_parallel:
                with tensor_parallel.get_cuda_rng_tracker().fork():
                    context_layer = self.core_attention_flash(q, k, v)
            else:
                context_layer = self.core_attention_flash(q, k, v)
            context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous()
827
828

        # =================
829
        # Output. [sq, b, h]
830
831
832
        # =================

        output, bias = self.dense(context_layer)
833

834
835
836
        return output, bias


837
def bias_dropout_add(x, bias, residual, prob, training):
Jared Casper's avatar
Jared Casper committed
838
    # type: (Tensor, Optional[Tensor], Tensor, float, bool) -> Tensor
839
840
841
    if bias is not None:
        x = x + bias
    out = torch.nn.functional.dropout(x, p=prob, training=training)
842
843
844
845
846
847
848
849
850
851
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


xingjinliang's avatar
xingjinliang committed
852
@jit_fuser
853
def bias_dropout_add_fused_train(x: torch.Tensor,
Jared Casper's avatar
Jared Casper committed
854
                                 bias: Optional[torch.Tensor],
855
856
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
857
858
859
    return bias_dropout_add(x, bias, residual, prob, True)


xingjinliang's avatar
xingjinliang committed
860
@jit_fuser
861
def bias_dropout_add_fused_inference(x: torch.Tensor,
Jared Casper's avatar
Jared Casper committed
862
                                     bias: Optional[torch.Tensor],
863
864
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
865
    return bias_dropout_add(x, bias, residual, prob, False)
866
867
868
869
870


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
871
    Transformer layer takes input with size [s, b, h] and returns an
872
873
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
874

liangjing's avatar
v1  
liangjing committed
875
    def __init__(self, config,
876
                 layer_number, layer_type=LayerType.encoder,
877
878
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
879
        args = get_args()
880
881

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
882
        self.layer_number = layer_number
883
        self.layer_type = layer_type
884

xingjinliang's avatar
xingjinliang committed
885
        self.apply_residual_connection_post_norm \
liangjing's avatar
v1  
liangjing committed
886
            = config.apply_residual_connection_post_layernorm
887

liangjing's avatar
v1  
liangjing committed
888
889
        self.bf16 = config.bf16
        self.fp32_residual_connection = config.fp32_residual_connection
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
890

xingjinliang's avatar
xingjinliang committed
891
892
        # Normalize the input data.
        self.input_norm = get_norm(config)
893
894

        # Self attention.
895
        self.self_attention = ParallelAttention(
liangjing's avatar
v1  
liangjing committed
896
            config,
897
898
899
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
liangjing's avatar
v1  
liangjing committed
900
901
        self.hidden_dropout = config.hidden_dropout
        self.bias_dropout_fusion = config.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
902
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
903

xingjinliang's avatar
xingjinliang committed
904
905
        # Normalize the attention output
        self.post_attention_norm = get_norm(config)
906

liangjing's avatar
v1  
liangjing committed
907
908
909
910
911
        # Cross attention.
        if self.layer_type in (LayerType.decoder,
                               LayerType.retro_decoder,
                               LayerType.retro_decoder_with_retriever,
                               LayerType.retro_encoder):
912
            self.inter_attention = ParallelAttention(
liangjing's avatar
v1  
liangjing committed
913
                config,
914
915
                layer_number,
                attention_type=AttnType.cross_attn)
xingjinliang's avatar
xingjinliang committed
916
917
            # Normalize the attention output.
            self.post_inter_attention_norm = get_norm(config)
918

919
        # MLP
rprenger's avatar
rprenger committed
920
        if args.num_experts is not None:
liangjing's avatar
v1  
liangjing committed
921
            self.mlp = SwitchMLP(config)
rprenger's avatar
rprenger committed
922
        else:
liangjing's avatar
v1  
liangjing committed
923
            self.mlp = ParallelMLP(config)
924

925
926
927
928
929
930
931
        # Set bias+dropout+add fusion grad_enable execution handler.
        TORCH_MAJOR = int(torch.__version__.split('.')[0])
        TORCH_MINOR = int(torch.__version__.split('.')[1])
        use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)
        self.bias_dropout_add_exec_handler = \
                nullcontext if use_nvfuser else torch.enable_grad

liangjing's avatar
v1  
liangjing committed
932
933
        if args.retro_add_retriever:
            self.retro_num_neighbors = args.retro_num_neighbors
xingjinliang's avatar
xingjinliang committed
934
935
936
            self.retro_chunk_length = args.retro_chunk_length
            self.retro_retrieved_length = \
                args.retro_num_retrieved_chunks * args.retro_chunk_length
liangjing's avatar
v1  
liangjing committed
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953

        # Retriever (bi-directional transformer with cross attention)
        if layer_type == LayerType.retro_decoder_with_retriever:
            self.retriever = ParallelTransformer(
                config=config,
                model_type=ModelType.retro_encoder,
                self_attn_mask_type=AttnMaskType.padding,
                pre_process=True,
                post_process=False,
            )
            self._retriever_key = 'retriever'
        else:
            self.retriever = None

    def default_decoder_cross_attention(self,
                                        encoder_output,
                                        enc_dec_attn_mask,
xingjinliang's avatar
xingjinliang committed
954
955
                                        norm_input,
                                        norm_output,
liangjing's avatar
v1  
liangjing committed
956
957
958
959
960
                                        bias_dropout_add_func):
        '''Cross attention for a standard encoder-decoder model.'''

        # Attention.
        attention_output, attention_bias = \
xingjinliang's avatar
xingjinliang committed
961
            self.inter_attention(norm_output,
liangjing's avatar
v1  
liangjing committed
962
963
964
965
                                 enc_dec_attn_mask,
                                 encoder_output=encoder_output)

        # Residual connection.
xingjinliang's avatar
xingjinliang committed
966
967
        if self.apply_residual_connection_post_norm:
            residual = norm_output
liangjing's avatar
v1  
liangjing committed
968
        else:
xingjinliang's avatar
xingjinliang committed
969
            residual = norm_input
liangjing's avatar
v1  
liangjing committed
970
971
972
973
974
975

        if attention_bias is not None:
            attention_bias = attention_bias.expand_as(residual)

        # Bias-dropout-add.
        with self.bias_dropout_add_exec_handler():
xingjinliang's avatar
xingjinliang committed
976
            norm_input = bias_dropout_add_func(
liangjing's avatar
v1  
liangjing committed
977
978
979
980
981
                attention_output,
                attention_bias,
                residual,
                self.hidden_dropout)

xingjinliang's avatar
xingjinliang committed
982
983
        # Normalize.
        norm_output = self.post_inter_attention_norm(norm_input)
liangjing's avatar
v1  
liangjing committed
984

xingjinliang's avatar
xingjinliang committed
985
        return norm_input, norm_output
liangjing's avatar
v1  
liangjing committed
986
987
988

    def retro_encoder_cross_attention(self,
                                      retriever_output,
xingjinliang's avatar
xingjinliang committed
989
990
                                      norm_input,
                                      norm_output,
liangjing's avatar
v1  
liangjing committed
991
992
993
994
995
996
997
998
999
1000
1001
1002
                                      bias_dropout_add_func):
        """Cross attention for Retro encoder.

        Notation:
            ns : Sequence length.
            bs : Batch size.
            d  : Hidden size.
            l  : Number of chunks per sample (i.e., seq_length/chunk_length).
            k  : Number of neighbors.
            r  : Number of retrieved tokens (neighbors + continuation).
        """

xingjinliang's avatar
xingjinliang committed
1003
        ns, bs, d = norm_output.shape # [r, bs * l * k, d]
liangjing's avatar
v1  
liangjing committed
1004
1005

        # Divide sequence dimension into chunks.
xingjinliang's avatar
xingjinliang committed
1006
1007
1008
1009
1010
1011
1012
        chunked_outputs = norm_output.reshape(self.retro_retrieved_length,
                                              -1,
                                              self.retro_num_neighbors,
                                              d)
        chunked_outputs_before_norm = \
            norm_input.reshape(self.retro_retrieved_length, -1,
                               self.retro_num_neighbors, d) # [r, bs*l, k, d]
liangjing's avatar
v1  
liangjing committed
1013
1014

        # Per-chunk attention.
xingjinliang's avatar
xingjinliang committed
1015
1016
        norm_inputs = []
        norm_outputs = []
liangjing's avatar
v1  
liangjing committed
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
        for k in range(self.retro_num_neighbors):

            # Attention.
            chunked_output = chunked_outputs[:,:,k].contiguous()
            attention_output, attention_bias = \
                self.inter_attention(
                    chunked_output, # Q (neighbor embedding)
                    None,
                    encoder_output=retriever_output) # K, V (hidden act)

            # Residual connection.
xingjinliang's avatar
xingjinliang committed
1028
            if self.apply_residual_connection_post_norm:
liangjing's avatar
v1  
liangjing committed
1029
1030
                residual = chunked_output
            else:
xingjinliang's avatar
xingjinliang committed
1031
                residual = chunked_outputs_before_norm[:,:,k]
liangjing's avatar
v1  
liangjing committed
1032
1033
1034

            # Re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
xingjinliang's avatar
xingjinliang committed
1035
                norm_input = bias_dropout_add_func(
liangjing's avatar
v1  
liangjing committed
1036
1037
1038
1039
                    attention_output,
                    None if attention_bias is None else attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
xingjinliang's avatar
xingjinliang committed
1040
                norm_inputs.append(norm_input)
liangjing's avatar
v1  
liangjing committed
1041
1042

            # Layer norm.
xingjinliang's avatar
xingjinliang committed
1043
1044
            norm_output = self.post_inter_attention_norm(norm_input)
            norm_outputs.append(norm_output)
liangjing's avatar
v1  
liangjing committed
1045
1046

        # Concatenate layer norms.
xingjinliang's avatar
xingjinliang committed
1047
1048
1049
1050
        # norm_input : [r, k * bs * l, d]
        # norm_output : [r, k * bs * l, d]
        norm_input = torch.stack(norm_inputs, dim=1).reshape(ns, bs, d)
        norm_output = torch.stack(norm_outputs, dim=1).reshape(ns, bs, d)
liangjing's avatar
v1  
liangjing committed
1051

xingjinliang's avatar
xingjinliang committed
1052
        return norm_input, norm_output
liangjing's avatar
v1  
liangjing committed
1053
1054
1055
1056
1057

    def retro_decoder_cross_attention(self,
                                      retriever_input,
                                      retriever_output,
                                      retriever_attn_mask,
xingjinliang's avatar
xingjinliang committed
1058
1059
                                      norm_input,
                                      norm_output,
liangjing's avatar
v1  
liangjing committed
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
                                      inference_params,
                                      bias_dropout_add_func):
        """Cross attention for Retro decoder.

        Notation:
            ns : Sequence length.
            bs : Batch size.
            d  : Hidden size.
            l  : Number of chunks per sample (i.e., seq_length/chunk_length).
            m  : Number of tokens per chunk.
            k  : Number of neighbors.
            r  : Number of retrieved tokens (neighbors + continuation).
        """

xingjinliang's avatar
xingjinliang committed
1074
        ns, bs, d = norm_output.shape
liangjing's avatar
v1  
liangjing committed
1075
1076
1077
1078
1079
1080
1081
        l = int(np.ceil(ns / self.retro_chunk_length))

        # Retrieve neighbors.
        if self.layer_type == LayerType.retro_decoder_with_retriever:
            first_ns = ns % self.retro_chunk_length
            if first_ns > 0:
                first_chunk, rest_chunk = \
xingjinliang's avatar
xingjinliang committed
1082
                    norm_output[:first_ns], norm_output[first_ns:]
liangjing's avatar
v1  
liangjing committed
1083
1084
1085
1086
1087
1088
1089
1090
                first_chunk = torch.nn.functional.pad(
                    first_chunk,
                    (0, 0, 0, 0, 0, self.retro_chunk_length - first_ns),
                    'constant',
                    0)
                chunked_output = \
                    torch.cat((first_chunk, rest_chunk), dim=0) # [l * m, bs, d]
            else:
xingjinliang's avatar
xingjinliang committed
1091
                chunked_output = norm_output # [l * m, bs, d]
liangjing's avatar
v1  
liangjing committed
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
            chunked_output = chunked_output \
                .reshape(l, self.retro_chunk_length, bs, d) \
                .permute(1, 2, 0, 3) \
                .reshape(self.retro_chunk_length, bs * l, d) \
                .contiguous()

            # Get Encoder Output
            retriever_output = self.retriever(
                hidden_states=retriever_input,
                attention_mask=retriever_attn_mask,
                retriever_output=chunked_output,
                retriever_attn_mask=retriever_attn_mask,
                inference_params=inference_params) # [r, k * bs * l , d]
            retriever_output = retriever_output.reshape(
                self.retro_retrieved_length * self.retro_num_neighbors, bs * l, d) # [r * k, bs * l, d]

        # Chunks.
        pad = (ns - 1) % self.retro_chunk_length
xingjinliang's avatar
xingjinliang committed
1110
        attending_chunks = norm_output[pad:]
liangjing's avatar
v1  
liangjing committed
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
        padded_chunks = torch.nn.functional.pad(
            attending_chunks,
            (0, 0, 0, 0, 0, self.retro_chunk_length - 1),
            'constant', 0)
        padded_chunked_output = padded_chunks \
            .reshape(l, self.retro_chunk_length, bs, d) \
            .permute(1, 2, 0, 3)
        padded_chunked_output = padded_chunked_output.reshape(
            self.retro_chunk_length, bs * l, d).contiguous()

        # Encoder output.
        attention_output, attention_bias = \
            self.inter_attention(padded_chunked_output,
                                 None,
                                 encoder_output=retriever_output)

        # Residual connection.
xingjinliang's avatar
xingjinliang committed
1128
1129
        if self.apply_residual_connection_post_norm:
            residual = norm_output
liangjing's avatar
v1  
liangjing committed
1130
        else:
xingjinliang's avatar
xingjinliang committed
1131
            residual = norm_input
liangjing's avatar
v1  
liangjing committed
1132
1133
1134

        # Re-enable torch grad to enable fused optimization.
        with torch.enable_grad():
xingjinliang's avatar
xingjinliang committed
1135
            norm_input = bias_dropout_add_func(
liangjing's avatar
v1  
liangjing committed
1136
1137
1138
1139
                attention_output,
                None if attention_bias is None else attention_bias.expand_as(attention_output),
                torch.zeros_like(attention_output),
                self.hidden_dropout)
xingjinliang's avatar
xingjinliang committed
1140
            norm_input = norm_input \
liangjing's avatar
v1  
liangjing committed
1141
1142
                .reshape(self.retro_chunk_length, bs, l, d) \
                .permute(2, 0, 1, 3) # [l, m, bs, d]
xingjinliang's avatar
xingjinliang committed
1143
1144
1145
            norm_input = norm_input.reshape(self.retro_chunk_length * l, bs, d)
            norm_input = torch.nn.functional.pad(
                norm_input,
liangjing's avatar
v1  
liangjing committed
1146
1147
                (0, 0, 0, 0, pad, 0),
                'constant', 0)[:ns] # [ns, b, d]
xingjinliang's avatar
xingjinliang committed
1148
1149
1150
            # TODO: better redesign with inference param
            args = get_args()
            norm_input = args.retro_attention_gate * norm_input + residual
liangjing's avatar
v1  
liangjing committed
1151
1152

        # Layer norm post the decoder attention
xingjinliang's avatar
xingjinliang committed
1153
        norm_output = self.post_inter_attention_norm(norm_input)
liangjing's avatar
v1  
liangjing committed
1154

xingjinliang's avatar
xingjinliang committed
1155
        return retriever_output, norm_input, norm_output
liangjing's avatar
v1  
liangjing committed
1156

1157
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
1158
                encoder_output=None, enc_dec_attn_mask=None,
liangjing's avatar
v1  
liangjing committed
1159
1160
1161
1162
1163
                retriever_input=None,
                retriever_output=None,
                retriever_attn_mask=None,
                inference_params=None,
                rotary_pos_emb=None):
xingjinliang's avatar
xingjinliang committed
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

        # Update the params in case the retro param changes during inference
        # TODO: better redesign with inference param
        args = get_args()
        if args.retro_add_retriever:
            self.retro_num_neighbors = args.retro_num_neighbors
            self.retro_chunk_length = args.retro_chunk_length
            self.retro_retrieved_length = \
                args.retro_num_retrieved_chunks * args.retro_chunk_length

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1174
        # hidden_states: [s, b, h]
1175

1176
        # Layer norm at the beginning of the transformer layer.
xingjinliang's avatar
xingjinliang committed
1177
        norm_output = self.input_norm(hidden_states)
liangjing's avatar
v1  
liangjing committed
1178

1179
        # Self attention.
1180
        attention_output, attention_bias = \
1181
            self.self_attention(
xingjinliang's avatar
xingjinliang committed
1182
                norm_output,
1183
                attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1184
                inference_params=inference_params,
Mostofa Patwary's avatar
Mostofa Patwary committed
1185
                rotary_pos_emb=rotary_pos_emb)
1186

1187
        # Residual connection.
xingjinliang's avatar
xingjinliang committed
1188
1189
        if self.apply_residual_connection_post_norm:
            residual = norm_output
1190
1191
1192
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1193
        if self.drop_path is None:
1194
1195
1196
1197
1198
1199
1200
1201
1202
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
1203
            else:
1204
                bias_dropout_add_func = get_bias_dropout_add(self.training)
1205

1206
1207
            if attention_bias is not None:
                attention_bias = attention_bias.expand_as(residual)
1208
            with self.bias_dropout_add_exec_handler():
xingjinliang's avatar
xingjinliang committed
1209
                norm_input = bias_dropout_add_func(
1210
                    attention_output,
1211
                    attention_bias,
1212
1213
1214
1215
1216
1217
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
xingjinliang's avatar
xingjinliang committed
1218
            norm_input = residual + self.drop_path(out)
1219

1220
        # Layer norm post the self attention.
xingjinliang's avatar
xingjinliang committed
1221
        norm_output = self.post_attention_norm(norm_input)
1222

liangjing's avatar
v1  
liangjing committed
1223
1224
1225
1226
        # Cross attention.
        if self.layer_type == LayerType.encoder:
            pass
        elif self.layer_type == LayerType.decoder:
xingjinliang's avatar
xingjinliang committed
1227
            norm_input, norm_output = \
liangjing's avatar
v1  
liangjing committed
1228
1229
1230
                self.default_decoder_cross_attention(
                    encoder_output,
                    enc_dec_attn_mask,
xingjinliang's avatar
xingjinliang committed
1231
1232
                    norm_input,
                    norm_output,
liangjing's avatar
v1  
liangjing committed
1233
1234
                    bias_dropout_add_func)
        elif self.layer_type == LayerType.retro_encoder:
xingjinliang's avatar
xingjinliang committed
1235
            norm_input, norm_output = \
liangjing's avatar
v1  
liangjing committed
1236
1237
                self.retro_encoder_cross_attention(
                    retriever_output,
xingjinliang's avatar
xingjinliang committed
1238
1239
                    norm_input,
                    norm_output,
liangjing's avatar
v1  
liangjing committed
1240
1241
1242
                    bias_dropout_add_func)
        elif self.layer_type in (LayerType.retro_decoder,
                                 LayerType.retro_decoder_with_retriever):
xingjinliang's avatar
xingjinliang committed
1243
            retriever_output, norm_input, norm_output = \
liangjing's avatar
v1  
liangjing committed
1244
1245
1246
1247
                self.retro_decoder_cross_attention(
                    retriever_input,
                    retriever_output,
                    retriever_attn_mask,
xingjinliang's avatar
xingjinliang committed
1248
1249
                    norm_input,
                    norm_output,
liangjing's avatar
v1  
liangjing committed
1250
1251
1252
1253
1254
                    inference_params,
                    bias_dropout_add_func)
        else:
            raise Exception("Unsupported layer type, '%s'." %
                            self.layer_type.name)
1255

1256
        # MLP.
xingjinliang's avatar
xingjinliang committed
1257
        mlp_output, mlp_bias = self.mlp(norm_output)
1258

1259
        # Second residual connection.
xingjinliang's avatar
xingjinliang committed
1260
1261
        if self.apply_residual_connection_post_norm:
            residual = norm_output
1262
        else:
xingjinliang's avatar
xingjinliang committed
1263
            residual = norm_input
1264

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1265
        if self.drop_path is None:
1266
1267
            if mlp_bias is not None:
                mlp_bias = mlp_bias.expand_as(residual)
1268
            with self.bias_dropout_add_exec_handler():
1269
1270
                output = bias_dropout_add_func(
                    mlp_output,
1271
                    mlp_bias,
1272
1273
                    residual,
                    self.hidden_dropout)
1274
1275
1276
1277
1278
1279
1280

            # Jit compiled function creates 'view' tensor. This tensor
            # potentially gets saved in the MPU checkpoint function context,
            # which rejects view tensors. While making a viewless tensor here
            # won't result in memory savings (like the data loader, or
            # p2p_communication), it serves to document the origin of this
            # 'view' tensor.
1281
1282
1283
            output = core.utils.make_viewless_tensor(inp = output,
                                                     requires_grad = output.requires_grad,
                                                     keep_graph = True)
1284

1285
        else:
1286
1287
1288
            if mlp_bias is not None:
                mlp_output = mlp_output + mlp_bias
            out = torch.nn.functional.dropout(mlp_output,
1289
1290
1291
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
1292

liangjing's avatar
v1  
liangjing committed
1293
1294
1295
1296
        if self.layer_type == LayerType.retro_decoder_with_retriever:
            return output, retriever_output
        else:
            return output
1297
1298


1299
1300
1301
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
1302
    The sole purpose of this layer is for when a standalone embedding layer
1303
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
1304
1305
1306
1307
1308
1309
1310
1311
1312
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


liangjing's avatar
v1  
liangjing committed
1325
def _get_num_layers(args, model_type, is_decoder=False):
1326
    """Compute the number of transformer layers resident on the current rank."""
liangjing's avatar
v1  
liangjing committed
1327
1328
1329
1330
    is_encoder_and_decoder_model = (model_type == ModelType.encoder_and_decoder)
    if model_type == ModelType.retro_encoder:
        num_layers = args.retro_encoder_layers
    elif mpu.get_pipeline_model_parallel_world_size() > 1:
xingjinliang's avatar
xingjinliang committed
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
        assert not is_encoder_and_decoder_model, "This is no longer supported."
        assert args.num_layers == args.encoder_num_layers
        assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
            'num_layers must be divisible by transformer_pipeline_model_parallel_size'

        # When a standalone embedding stage is used, all transformer layers
        # are divided among pipeline rank >= 1, while on pipeline rank 0,
        # ranks either contain the input embedding layer (virtual pp rank 0),
        # or no layers at all (virtual pp rank >= 1).
        num_layers = (
            0
            if args.standalone_embedding_stage
            and mpu.get_pipeline_model_parallel_rank() == 0 else
            args.num_layers // args.transformer_pipeline_model_parallel_size
        )
1346
    else:
Jared Casper's avatar
Jared Casper committed
1347
1348
1349
1350
        if not is_decoder:
            num_layers = args.encoder_num_layers
        else:
            num_layers = args.decoder_num_layers
1351
1352
1353
    return num_layers


liangjing's avatar
v1  
liangjing committed
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
def _get_layer_type(model_type, default_layer_type, retro_layer_numbers,
                    layer_number):
    args = get_args()
    if args.retro_add_retriever and layer_number in retro_layer_numbers:
        if model_type == ModelType.retro_decoder:
            return LayerType.retro_decoder_with_retriever \
                if layer_number == retro_layer_numbers[0] \
                   else LayerType.retro_decoder
        elif model_type == ModelType.retro_encoder:
            return LayerType.retro_encoder
        else:
            raise Exception("Unsupported model type, '%s'." % model_type)
    else:
        return default_layer_type


1370
1371
1372
class ParallelTransformer(MegatronModule):
    """Transformer class."""

liangjing's avatar
v1  
liangjing committed
1373
1374
    def __init__(self, config,
                 model_type, layer_type=LayerType.encoder,
1375
                 self_attn_mask_type=AttnMaskType.padding,
xingjinliang's avatar
xingjinliang committed
1376
                 post_norm=True,
liangjing's avatar
v1  
liangjing committed
1377
1378
                 pre_process=True,
                 post_process=True,
1379
                 drop_path_rate=0.0):
1380
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
1381
        args = get_args()
1382

1383
        self.layer_type = layer_type
liangjing's avatar
v1  
liangjing committed
1384
1385
1386
        self.model_type = model_type
        self.bf16 = config.bf16
        self.fp32_residual_connection = config.fp32_residual_connection
xingjinliang's avatar
xingjinliang committed
1387
        self.post_norm = post_norm
1388
1389
1390
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
1391
        self.drop_path_rate = drop_path_rate
1392
        self.transformer_impl = args.transformer_impl
liangjing's avatar
v1  
liangjing committed
1393
        self.retro_add_retriever = args.retro_add_retriever
1394

1395
        # Store activation checkpoiting flag.
liangjing's avatar
v1  
liangjing committed
1396
1397
1398
        self.recompute_granularity = config.recompute_granularity
        self.recompute_method = config.recompute_method
        self.recompute_num_layers = config.recompute_num_layers
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1399
        self.distribute_saved_activations = \
liangjing's avatar
v1  
liangjing committed
1400
            config.distribute_saved_activations and not config.sequence_parallel
1401

liangjing's avatar
v1  
liangjing committed
1402
        self.sequence_parallel = config.sequence_parallel
1403

1404
        # Transformer Engine Init.
liangjing's avatar
v1  
liangjing committed
1405
1406
1407
        self.transformer_engine_v_0_10 = False
        self.transformer_engine_v_0_11 = False
        self.transformer_engine_v_0_8 = False
1408
1409
1410
        if self.transformer_impl == 'transformer_engine':
            global transformer_engine
            import transformer_engine
liangjing's avatar
v1  
liangjing committed
1411

xingjinliang's avatar
xingjinliang committed
1412
            if core.utils.is_te_min_version("0.8.0"):
liangjing's avatar
v1  
liangjing committed
1413
                self.transformer_engine_v_0_8 = True
xingjinliang's avatar
xingjinliang committed
1414
            if core.utils.is_te_min_version("0.10.0"):
liangjing's avatar
v1  
liangjing committed
1415
                self.transformer_engine_v_0_10 = True
xingjinliang's avatar
xingjinliang committed
1416
            if core.utils.is_te_min_version("0.11.0"):
liangjing's avatar
v1  
liangjing committed
1417
1418
                self.transformer_engine_v_0_11 = True

xingjinliang's avatar
xingjinliang committed
1419
1420
            assert not args.squared_relu, ("TransformerEngine does not support squared "
                                           "relu activation.")
liangjing's avatar
v1  
liangjing committed
1421
1422

        self.use_fp8 = args.fp8 is not None
1423
        self.fp8_recipe = None
1424
        self.fp8_group = None
1425
        if self.use_fp8:
liangjing's avatar
v1  
liangjing committed
1426
1427
            assert args.transformer_impl == 'transformer_engine', \
                'transformer-engine required for fp8 training and inference'
xingjinliang's avatar
xingjinliang committed
1428
            self.fp8_group = mpu.get_amax_reduction_group(tp_only_amax_red=config.tp_only_amax_red)
liangjing's avatar
v1  
liangjing committed
1429
            if args.fp8 == "e4m3":
1430
                fp8_format = transformer_engine.common.recipe.Format.E4M3
liangjing's avatar
v1  
liangjing committed
1431
            elif args.fp8 == "hybrid":
1432
                fp8_format = transformer_engine.common.recipe.Format.HYBRID
liangjing's avatar
v1  
liangjing committed
1433
1434
            else:
                raise ValueError("The DelayedScaling recipe only supports E4M3 and HYBRID formats.")
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
            self.fp8_recipe = transformer_engine.common.recipe.DelayedScaling(
                margin=args.fp8_margin,
                interval=args.fp8_interval,
                fp8_format=fp8_format,
                amax_history_len=args.fp8_amax_history_len,
                amax_compute_algo=args.fp8_amax_compute_algo,
                override_linear_precision=(False, False, not args.fp8_wgrad),
            )

        self.num_microbatches_in_previous_step = -1
        self.microbatch_count = 0
liangjing's avatar
v1  
liangjing committed
1446
        self.checkpoint_core_attention = config.recompute_granularity == 'selective'
1447

1448
        # Number of layers.
liangjing's avatar
v1  
liangjing committed
1449
1450
1451
1452
1453
1454
        self.num_layers = _get_num_layers(args, model_type,
                                          layer_type==LayerType.decoder)

        self.drop_path_rates = [
            rate.item() for rate in
            torch.linspace(0, self.drop_path_rate, config.num_layers)]
Mohammad's avatar
Mohammad committed
1455

liangjing's avatar
v1  
liangjing committed
1456
1457
1458
1459
1460
1461
1462
        self.retro_layer_numbers = None
        if model_type == ModelType.retro_decoder:
            retro_layer_start = 6 if config.num_layers <= 15 else 9
            self.retro_layer_numbers = \
                np.arange(retro_layer_start, args.num_layers + 1, 3).tolist()
        if model_type == ModelType.retro_encoder:
            self.retro_layer_numbers = [1]
1463

Mohammad's avatar
Mohammad committed
1464
        # Transformer layers.
liangjing's avatar
v1  
liangjing committed
1465
1466
1467
1468
1469
        if args.retro_add_retriever:
            assert self.recompute_granularity != 'full', \
                "Full recompute not supported for Retro."
            assert args.transformer_impl == 'local', \
                "Transformer engine does not support Retro layers."
Mohammad's avatar
Mohammad committed
1470
        def build_layer(layer_number):
1471
            if args.transformer_impl == 'local':
liangjing's avatar
v1  
liangjing committed
1472
1473
1474
                current_layer_type = _get_layer_type(
                    model_type, layer_type, self.retro_layer_numbers,
                    layer_number)
1475
                return ParallelTransformerLayer(
liangjing's avatar
v1  
liangjing committed
1476
                    config,
1477
                    layer_number,
liangjing's avatar
v1  
liangjing committed
1478
                    layer_type=current_layer_type,
1479
1480
1481
                    self_attn_mask_type=self_attn_mask_type,
                    drop_path_rate=self.drop_path_rates[layer_number - 1])
            else:
liangjing's avatar
v1  
liangjing committed
1482
1483
1484
1485
1486
1487
1488
1489
                # This argument is only available from TE v0.10 onwards.
                extra_transformer_engine_kwargs = {}
                if self.transformer_engine_v_0_8:
                    extra_transformer_engine_kwargs["bias"] = args.add_bias_linear
                if self.transformer_engine_v_0_10:
                    extra_transformer_engine_kwargs["activation"] = "swiglu" if args.swiglu else "gelu"
                if self.transformer_engine_v_0_11:
                    extra_transformer_engine_kwargs["normalization"] = args.normalization
xingjinliang's avatar
xingjinliang committed
1490
1491
1492
1493
1494
                assert config.attention_softmax_in_fp32, "TransformerEngine only supports softmax compute in FP32."
                assert (
                    (bool(int(os.getenv("NVTE_APPLY_QK_LAYER_SCALING", "0"))) and args.fp16) == config.apply_query_key_layer_scaling
                ), ("Unsupported config for apply_query_key_layer_scaling in TransformerEngine. If --apply-query-key-layer-scaling is "
                    "provided, set env-var NVTE_APPLY_QK_LAYER_SCALING=1 and you must be using fp16.")
1495
                return transformer_engine.pytorch.TransformerLayer(
liangjing's avatar
v1  
liangjing committed
1496
1497
1498
1499
1500
1501
1502
1503
                    config.hidden_size,
                    config.ffn_hidden_size,
                    config.num_attention_heads,
                    layernorm_epsilon=config.layernorm_epsilon,
                    hidden_dropout=config.hidden_dropout,
                    attention_dropout=config.attention_dropout,
                    init_method=config.init_method,
                    output_layer_init_method=config.output_layer_init_method,
1504
                    layer_number=layer_number,
liangjing's avatar
v1  
liangjing committed
1505
                    kv_channels=config.kv_channels,
1506
                    self_attn_mask_type=self_attn_mask_type.name,
xingjinliang's avatar
xingjinliang committed
1507
1508
1509
1510
1511
                    tp_group=mpu.get_tensor_model_parallel_group() if mpu.is_initialized() else None,
                    tp_size=mpu.get_tensor_model_parallel_world_size(),
                    get_rng_state_tracker=get_cuda_rng_tracker
                    if get_cuda_rng_tracker().is_initialized()
                    else None,
liangjing's avatar
v1  
liangjing committed
1512
                    fuse_wgrad_accumulation=config.gradient_accumulation_fusion,
1513
1514
                    seq_length=args.seq_length,
                    micro_batch_size=args.micro_batch_size,
liangjing's avatar
v1  
liangjing committed
1515
1516
1517
                    sequence_parallel=config.sequence_parallel,
                    params_dtype=config.params_dtype,
                    apply_residual_connection_post_layernorm=config.apply_residual_connection_post_layernorm,
1518
1519
1520
1521
                    output_layernorm=False,
                    layer_type="encoder",
                    drop_path_rate=self.drop_path_rates[layer_number - 1],
                    set_parallel_mode=True,
liangjing's avatar
v1  
liangjing committed
1522
1523
                    fuse_qkv_params=True,
                    **extra_transformer_engine_kwargs)
1524

liangjing's avatar
v1  
liangjing committed
1525
1526
        if config.virtual_pipeline_model_parallel_size is not None:
            assert config.num_layers % config.virtual_pipeline_model_parallel_size == 0, \
1527
1528
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1529
            assert args.model_type != ModelType.encoder_and_decoder
1530
1531
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
liangjing's avatar
v1  
liangjing committed
1532
            self.num_layers = self.num_layers // config.virtual_pipeline_model_parallel_size
1533
1534
1535
1536
1537
1538
1539
1540
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
1541
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
liangjing's avatar
v1  
liangjing committed
1542
                config.num_layers // config.virtual_pipeline_model_parallel_size) + \
1543
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
1544
        else:
1545
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1546
            if args.model_type == ModelType.encoder_and_decoder and \
1547
1548
                    mpu.get_pipeline_model_parallel_world_size() > 1:
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1549
1550
1551
1552
1553
1554
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
1555
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
1556

1557
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
1558
            # When a standalone embedding stage is used (e.g.,
1559
            # args.standalone_embedding_stage == True), virtual pipeline ranks
1560
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
1561
1562
1563
1564
1565
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
1566
1567
1568
1569
1570
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
1571

liangjing's avatar
v1  
liangjing committed
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
            # Update dropout rate for Retro encoder.
            if model_type == ModelType.retro_encoder:
                for layer in self.layers:
                    if layer.self_attention.use_flash_attn:
                        layer.self_attention.core_attention_flash.dropout_p = \
                            torch.nn.Dropout(args.retro_encoder_attention_dropout)
                    else:
                        layer.self_attention.core_attention.attention_dropout.p =\
                            args.retro_encoder_attention_dropout
                    layer.hidden_dropout = args.retro_encoder_hidden_dropout

xingjinliang's avatar
xingjinliang committed
1583
        if self.post_process and self.post_norm:
1584
            # Final layer norm before output.
xingjinliang's avatar
xingjinliang committed
1585
            self.final_norm = get_norm(config)
1586

Mohammad's avatar
Mohammad committed
1587
    def _get_layer(self, layer_number):
1588
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
1589

1590
    def _checkpointed_forward(self, hidden_states, attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1591
1592
                              encoder_output, enc_dec_attn_mask,
                              rotary_pos_emb, is_first_microbatch):
1593
        """Forward method with activation checkpointing."""
liangjing's avatar
v1  
liangjing committed
1594
        def custom(start, end):
1595
            def custom_forward(*args, **kwargs):
1596
                x_, *args = args
Mohammad's avatar
Mohammad committed
1597
1598
                for index in range(start, end):
                    layer = self._get_layer(index)
1599
                    x_ = layer(x_, *args, **kwargs)
1600
                return x_
liangjing's avatar
v1  
liangjing committed
1601
1602
1603
1604
1605
1606
1607
            return custom_forward

        te_forward_kwargs = {}
        if self.transformer_impl == 'transformer_engine':
            te_forward_kwargs['is_first_microbatch'] = is_first_microbatch
            if self.transformer_engine_v_0_10:
                te_forward_kwargs['rotary_pos_emb'] = rotary_pos_emb
1608

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1609
        if self.recompute_method == 'uniform':
liangjing's avatar
v1  
liangjing committed
1610
1611
            # Uniformly divide the total number of Transformer layers and
            # checkpoint the input activation of each divided chunk.
1612
1613
1614
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
1615
                if self.transformer_impl == 'transformer_engine':
liangjing's avatar
v1  
liangjing committed
1616
1617
                    hidden_states = transformer_engine.pytorch.checkpoint(
                        custom(l, l + self.recompute_num_layers),
1618
1619
1620
                        self.distribute_saved_activations,
                        tensor_parallel.get_cuda_rng_tracker,
                        mpu.get_tensor_model_parallel_group(),
Mostofa Patwary's avatar
Mostofa Patwary committed
1621
                        hidden_states, attention_mask, encoder_output,
liangjing's avatar
v1  
liangjing committed
1622
                        enc_dec_attn_mask, **te_forward_kwargs)
1623
1624
1625
1626
                else:
                    hidden_states = tensor_parallel.checkpoint(
                        custom(l, l + self.recompute_num_layers),
                        self.distribute_saved_activations,
liangjing's avatar
v1  
liangjing committed
1627
1628
1629
                        hidden_states, attention_mask,
                        encoder_output, enc_dec_attn_mask,
                        None, None, None, None, rotary_pos_emb)
1630

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1631
                l += self.recompute_num_layers
1632

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1633
        elif self.recompute_method == 'block':
1634
1635
1636
1637
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1638
                if l < self.recompute_num_layers:
1639
                    if self.transformer_impl == 'transformer_engine':
liangjing's avatar
v1  
liangjing committed
1640
1641
                        hidden_states = transformer_engine.pytorch.checkpoint(
                            custom(l, l + 1),
1642
1643
1644
                            self.distribute_saved_activations,
                            tensor_parallel.get_cuda_rng_tracker,
                            mpu.get_tensor_model_parallel_group(),
Mostofa Patwary's avatar
Mostofa Patwary committed
1645
                            hidden_states, attention_mask, encoder_output,
liangjing's avatar
v1  
liangjing committed
1646
                            enc_dec_attn_mask, **te_forward_kwargs)
1647
1648
1649
1650
                    else:
                        hidden_states = tensor_parallel.checkpoint(
                            custom(l, l + 1),
                            self.distribute_saved_activations,
liangjing's avatar
v1  
liangjing committed
1651
1652
1653
                            hidden_states, attention_mask,
                            encoder_output, enc_dec_attn_mask,
                            None, None, None, None, rotary_pos_emb)
1654
                else:
1655
                    if self.transformer_impl == 'transformer_engine':
liangjing's avatar
v1  
liangjing committed
1656
                        hidden_states = custom(l, l + 1)(
Mostofa Patwary's avatar
Mostofa Patwary committed
1657
                            hidden_states, attention_mask, encoder_output,
liangjing's avatar
v1  
liangjing committed
1658
                            enc_dec_attn_mask, **te_forward_kwargs)
1659
1660
                    else:
                        hidden_states = custom(l, l + 1)(
liangjing's avatar
v1  
liangjing committed
1661
1662
1663
                            hidden_states, attention_mask,
                            encoder_output, enc_dec_attn_mask,
                            None, None, None, None, rotary_pos_emb)
1664
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1665
            raise ValueError("Invalid activation recompute method.")
1666
1667
1668

        return hidden_states

1669
    def set_input_tensor(self, input_tensor):
1670
1671
1672
1673
1674
1675
1676
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
1677
1678
        self.input_tensor = input_tensor

1679
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
1680
                encoder_output=None, enc_dec_attn_mask=None,
liangjing's avatar
v1  
liangjing committed
1681
1682
1683
1684
1685
                retriever_input=None,
                retriever_output=None,
                retriever_attn_mask=None,
                inference_params=None,
                rotary_pos_emb=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1686
1687
        # hidden_states: [s, b, h]

1688
        # Checks.
mshoeybi's avatar
mshoeybi committed
1689
        if inference_params:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1690
            assert self.recompute_granularity is None, \
1691
                'inference does not work with activation checkpointing'
1692

1693
        if not self.pre_process:
1694
            # See set_input_tensor()
1695
            hidden_states = self.input_tensor
1696

1697
1698
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
1699
1700
1701
1702
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
1703
1704
1705
1706
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
1707
        #
1708
1709
1710
1711
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
1712
        hidden_states = core.utils.make_viewless_tensor(
1713
            hidden_states,
1714
1715
            requires_grad=True,
            keep_graph=True,
1716
1717
        )

liangjing's avatar
v1  
liangjing committed
1718
        # RNG context.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1719
        if self.sequence_parallel:
1720
            rng_context = tensor_parallel.get_cuda_rng_tracker().fork()
1721
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1722
            rng_context = nullcontext()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1723

liangjing's avatar
v1  
liangjing committed
1724
        # Forward layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1725
        with rng_context:
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
            # The fp8_autocast context manager is a no-op when enabled=True
            # The if...else serves to short circuit name resolution for fp8_autocast
            with transformer_engine.pytorch.fp8_autocast(
                enabled=self.use_fp8,
                fp8_recipe=self.fp8_recipe,
                fp8_group=self.fp8_group
            ) if self.use_fp8 else nullcontext():
                # Determine if the current iteration is first microbatch
                if self.num_microbatches_in_previous_step != get_num_microbatches():
                    self.microbatch_count = 0 # Reset count on new batch size rampup interval
                self.num_microbatches_in_previous_step = get_num_microbatches()
                is_first_microbatch = self.microbatch_count % get_num_microbatches() == 0

                # Forward pass.
                if self.recompute_granularity == 'full':
                    hidden_states = self._checkpointed_forward(hidden_states,
                                                               attention_mask,
                                                               encoder_output,
                                                               enc_dec_attn_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1745
                                                               rotary_pos_emb,
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
                                                               is_first_microbatch)
                else:
                    forward_kwargs = {
                        'encoder_output': encoder_output,
                        'enc_dec_attn_mask': enc_dec_attn_mask,
                        'inference_params': inference_params,
                    }

                    if self.transformer_impl == 'transformer_engine':
                        forward_kwargs['is_first_microbatch'] = is_first_microbatch
                        forward_kwargs['checkpoint_core_attention'] = self.checkpoint_core_attention
liangjing's avatar
v1  
liangjing committed
1757
1758
1759
1760
1761
1762
1763
                        if self.transformer_engine_v_0_10:
                            forward_kwargs['rotary_pos_emb'] = rotary_pos_emb
                    else:
                        forward_kwargs['rotary_pos_emb'] = rotary_pos_emb
                        forward_kwargs['retriever_input'] = retriever_input
                        forward_kwargs['retriever_output'] = retriever_output
                        forward_kwargs['retriever_attn_mask'] = retriever_attn_mask
1764
1765
1766
1767
1768
1769
1770
1771
1772

                    for index in range(self.num_layers):
                        layer = self._get_layer(index)

                        hidden_states = layer(
                            hidden_states,
                            attention_mask,
                            **forward_kwargs)

liangjing's avatar
v1  
liangjing committed
1773
1774
1775
1776
1777
1778
1779
1780
                        # First Retro decoder layer returns both hidden_states
                        # and retriever_output. Make retriever_output available
                        # to subsequence Retro layers.
                        if isinstance(hidden_states, tuple):
                            assert len(hidden_states) == 2
                            hidden_states, retriever_output = hidden_states
                            forward_kwargs["retriever_output"] = retriever_output

1781
1782
1783
                # Skip counter update for eval and activation checkpointing
                if torch.is_grad_enabled() and self.training:
                    self.microbatch_count += 1
mshoeybi's avatar
mshoeybi committed
1784

1785
        # Final layer norm.
xingjinliang's avatar
xingjinliang committed
1786
1787
        if self.post_process and self.post_norm:
            hidden_states = self.final_norm(hidden_states)
1788

1789
        return hidden_states
xingjinliang's avatar
xingjinliang committed
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804

    def load_state_dict(self, state_dict, strict=True):
        """Customize load."""

        # Handle renaming layernorm -> norm in component names
        state_dict_ = {}
        for key in state_dict.keys():
            # Bypass TransformerEngine module parameters.
            if "layernorm_qkv" in key or "layernorm_mlp" in key:
                state_dict_[key] = state_dict[key]
                continue
            newkey = key.replace("layernorm", "norm")
            state_dict_[newkey] = state_dict[key]

        super().load_state_dict(state_dict_, strict)