bert_model.py 7.49 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BERT model."""

import torch

Mohammad's avatar
Mohammad committed
20
from megatron import get_args
mohammad's avatar
mohammad committed
21
from megatron import mpu
22
23
24
from megatron.model.language_model import parallel_lm_logits
from megatron.model.language_model import get_language_model
from megatron.model.transformer import LayerNorm
25
from megatron.model.utils import openai_gelu, erf_gelu
26
27
28
from megatron.model.utils import get_linear_layer
from megatron.model.utils import init_method_normal
from megatron.model.utils import scaled_init_method_normal
29
30
from megatron.module import MegatronModule

Neel Kant's avatar
Neel Kant committed
31
def bert_attention_mask_func(attention_scores, attention_mask):
32
    attention_scores.masked_fill_(attention_mask, -10000.0)
Neel Kant's avatar
Neel Kant committed
33
34
    return attention_scores

35
def bert_extended_attention_mask(attention_mask):
Neel Kant's avatar
Neel Kant committed
36
37
38
39
40
41
42
43
44
45
    # We create a 3D attention mask from a 2D tensor mask.
    # [b, 1, s]
    attention_mask_b1s = attention_mask.unsqueeze(1)
    # [b, s, 1]
    attention_mask_bs1 = attention_mask.unsqueeze(2)
    # [b, s, s]
    attention_mask_bss = attention_mask_b1s * attention_mask_bs1
    # [b, 1, s, s]
    extended_attention_mask = attention_mask_bss.unsqueeze(1)

46
47
    # Convert attention mask to binary:
    extended_attention_mask = (extended_attention_mask < 0.5)
Neel Kant's avatar
Neel Kant committed
48

49
    return extended_attention_mask
Neel Kant's avatar
Neel Kant committed
50
51
52
53
54
55
56
57
58
59
60

def bert_position_ids(token_ids):
    # Create position ids
    seq_length = token_ids.size(1)
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=token_ids.device)
    position_ids = position_ids.unsqueeze(0).expand_as(token_ids)

    return position_ids


61
62
63
64
65
66
67
68
class BertLMHead(MegatronModule):
    """Masked LM head for Bert

    Arguments:
        mpu_vocab_size: model parallel size of vocabulary.
        hidden_size: hidden size
        init_method: init method for weight initialization
        layernorm_epsilon: tolerance for layer norm divisions
69
        parallel_output: whether output logits being distributed or not.
70
    """
Neel Kant's avatar
Neel Kant committed
71

72
73
74
75
76
    def __init__(self, mpu_vocab_size, hidden_size, init_method,
                 layernorm_epsilon, parallel_output):

        super(BertLMHead, self).__init__()

77
        args = get_args()
Neel Kant's avatar
Neel Kant committed
78

79
80
        self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size))
        self.bias.model_parallel = True
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
81
82
        self.bias.partition_dim = 0
        self.bias.stride = 1
83
84
85
86
        self.parallel_output = parallel_output

        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)
        self.layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
87
88
89
        self.gelu = torch.nn.functional.gelu
        if args.openai_gelu:
            self.gelu = openai_gelu
90
        elif args.onnx_safe:
Boris Fomitchev's avatar
Boris Fomitchev committed
91
            self.gelu = erf_gelu
92
93
94

    def forward(self, hidden_states, word_embeddings_weight):
        hidden_states = self.dense(hidden_states)
95
        hidden_states = self.gelu(hidden_states)
96
97
98
99
100
101
102
103
104
105
106
        hidden_states = self.layernorm(hidden_states)
        output = parallel_lm_logits(hidden_states,
                                    word_embeddings_weight,
                                    self.parallel_output,
                                    bias=self.bias)
        return output


class BertModel(MegatronModule):
    """Bert Language model."""

Mohammad's avatar
Mohammad committed
107
    def __init__(self, num_tokentypes=2, add_binary_head=True,
108
                 parallel_output=True):
109
        super(BertModel, self).__init__()
Mohammad's avatar
Mohammad committed
110
        args = get_args()
111

mohammad's avatar
mohammad committed
112
        self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
113
114
        self.add_binary_head = add_binary_head
        self.parallel_output = parallel_output
Mohammad's avatar
Mohammad committed
115
116
117
        init_method = init_method_normal(args.init_method_std)
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
Neel Kant's avatar
Neel Kant committed
118

119
        self.language_model, self._language_model_key = get_language_model(
Mohammad's avatar
Mohammad committed
120
            attention_mask_func=bert_attention_mask_func,
121
            num_tokentypes=num_tokentypes,
122
            add_pooler=self.add_binary_head,
123
            init_method=init_method,
124
            scaled_init_method=scaled_init_method)
125

126
127
128
129
        self.lm_head = BertLMHead(
            self.language_model.embedding.word_embeddings.weight.size(0),
            args.hidden_size, init_method, args.layernorm_epsilon, parallel_output)
        self._lm_head_key = 'lm_head'
130
        if self.add_binary_head:
Mohammad's avatar
Mohammad committed
131
132
            self.binary_head = get_linear_layer(args.hidden_size, 2,
                                                init_method)
133
134
            self._binary_head_key = 'binary_head'

mohammad's avatar
mohammad committed
135
136
    def forward(self, input_ids, attention_mask,
                tokentype_ids=None, lm_labels=None):
137

138
        extended_attention_mask = bert_extended_attention_mask(attention_mask)
139
140
        position_ids = bert_position_ids(input_ids)

141
        if self.add_binary_head:
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
            lm_output, pooled_output = self.language_model(
                input_ids,
                position_ids,
                extended_attention_mask,
                tokentype_ids=tokentype_ids)
        else:
            lm_output = self.language_model(
                input_ids,
                position_ids,
                extended_attention_mask,
                tokentype_ids=tokentype_ids)

        # Output.
        lm_logits = self.lm_head(
            lm_output, self.language_model.embedding.word_embeddings.weight)
157

mohammad's avatar
mohammad committed
158
        binary_logits = None
159
160
        if self.add_binary_head:
            binary_logits = self.binary_head(pooled_output)
mohammad's avatar
mohammad committed
161
162

        if lm_labels is None:
163
            return lm_logits, binary_logits
mohammad's avatar
mohammad committed
164
        else:
mohammad's avatar
mohammad committed
165
166
167
168
169
170
            if self.fp16_lm_cross_entropy:
                assert lm_logits.dtype == torch.half
                lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits, lm_labels)
            else:
                lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits.float(),
                                                           lm_labels)
mohammad's avatar
mohammad committed
171
            return lm_loss, binary_logits
172
173
174
175
176
177
178
179
180
181


    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
182
183
184
185
            destination, prefix, keep_vars)
        state_dict_[self._lm_head_key] \
            = self.lm_head.state_dict_for_save_checkpoint(
            destination, prefix, keep_vars)
186
187
188
189
190
191
192
193
194
195
        if self.add_binary_head:
            state_dict_[self._binary_head_key] \
                = self.binary_head.state_dict(destination, prefix, keep_vars)
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)
196
197
        self.lm_head.load_state_dict(
            state_dict[self._lm_head_key], strict=strict)
198
        if self.add_binary_head:
Neel Kant's avatar
Neel Kant committed
199
200
            self.binary_head.load_state_dict(
                state_dict[self._binary_head_key], strict=strict)