ict_qualitative_test.py 4.47 KB
Newer Older
Neel Kant's avatar
Neel Kant committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import numpy as np
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

from megatron import get_args
from megatron import mpu
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
from megatron.data.bert_dataset import get_indexed_dataset_
from megatron.data.ict_dataset import InverseClozeDataset
from megatron.data.samplers import DistributedBatchSampler
from megatron.initialize import initialize_megatron
from megatron.training import get_model
from pretrain_bert_ict import get_batch, model_provider


def main():
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
    args = get_args()
    model = load_checkpoint()
    model.eval()
    dataset = get_dataset()
    data_iter = iter(get_dataloader(dataset))

    all_input_tokens = []
    all_input_logits = []
Neel Kant's avatar
Neel Kant committed
27
28
    all_block_tokens = []
    all_block_logits = []
Neel Kant's avatar
Neel Kant committed
29
30

    for i in range(100):
Neel Kant's avatar
Neel Kant committed
31
        input_tokens, input_types, input_pad_mask, block_tokens, block_token_types, block_pad_mask = get_batch(data_iter)
Neel Kant's avatar
Neel Kant committed
32
        input_logits, doc_logits, _ = model.module.module.forward(
Neel Kant's avatar
Neel Kant committed
33
            input_tokens, input_types, input_pad_mask, block_tokens, block_pad_mask, block_token_types, return_logits=True)
Neel Kant's avatar
Neel Kant committed
34
35
36

        all_input_tokens.append(input_tokens.detach().cpu().numpy())
        all_input_logits.append(input_logits.detach().cpu().numpy())
Neel Kant's avatar
Neel Kant committed
37
38
        all_block_tokens.append(block_tokens.detach().cpu().numpy())
        all_block_logits.append(doc_logits.detach().cpu().numpy())
Neel Kant's avatar
Neel Kant committed
39

Neel Kant's avatar
Neel Kant committed
40
41
42
43
    all_input_tokens = np.array(all_input_tokens).reshape(-1, args.seq_length)
    all_input_logits = np.array(all_input_logits).reshape(-1, 128)
    all_block_tokens = np.array(all_block_tokens).reshape(-1, args.seq_length)
    all_block_logits = np.array(all_block_logits).reshape(-1, 128)
Neel Kant's avatar
Neel Kant committed
44
45
    np.save('input_tokens.npy', all_input_tokens)
    np.save('input_logits.npy', all_input_logits)
Neel Kant's avatar
Neel Kant committed
46
47
    np.save('block_tokens.npy', all_block_tokens)
    np.save('doc_logits.npy', all_block_logits)
Neel Kant's avatar
Neel Kant committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77


def load_checkpoint():
    args = get_args()
    model = get_model(model_provider)

    if isinstance(model, torchDDP):
        model = model.module
    tracker_filename = get_checkpoint_tracker_filename(args.load)
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    assert iteration > 0
    checkpoint_name = get_checkpoint_name(args.load, iteration, False)
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
    model.load_state_dict(state_dict['model'])
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

    return model


def get_dataset():
    args = get_args()
Neel Kant's avatar
Neel Kant committed
78
79
    block_dataset = get_indexed_dataset_(args.data_path, 'mmap', True)
    titles_dataset = get_indexed_dataset_(args.data_path + '-titles', 'mmap', True)
Neel Kant's avatar
Neel Kant committed
80

Neel Kant's avatar
Neel Kant committed
81
82
83
    doc_idx_ptr = block_dataset.get_doc_idx()
    total_num_documents = block_dataset.doc_idx.shape[0] - 1
    block_dataset.set_doc_idx(doc_idx_ptr[0:total_num_documents])
Neel Kant's avatar
Neel Kant committed
84
85
    kwargs = dict(
        name='full',
Neel Kant's avatar
Neel Kant committed
86
87
        context_dataset=block_dataset,
        titles_dataset=titles_dataset,
Neel Kant's avatar
Neel Kant committed
88
89
        data_prefix=args.data_path,
        num_epochs=None,
Neel Kant's avatar
Neel Kant committed
90
        max_num_samples=total_num_documents * 3,
Neel Kant's avatar
Neel Kant committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        max_seq_length=288,  # doesn't matter
        short_seq_prob=0.0001,  # doesn't matter
        seed=1
    )
    dataset = InverseClozeDataset(**kwargs)
    return dataset


def get_dataloader(dataset):
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    global_batch_size = args.batch_size * world_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=True,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


if __name__ == "__main__":
    main()