train_mixtral_8x7B_1nodes.sh 4.79 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
#!/bin/bash

silencealiang's avatar
silencealiang committed
3
4
5
6
7
8
9
10
11
for para in $*
do
    if [[ $para == --profiling* ]];then
        profiling=${para#*=}
        export GPU_FLUSH_ON_EXECUTION=1
        export HIP_DIRECT_DISPATCH=0
    fi
done

xingjinliang's avatar
xingjinliang committed
12
13
source /opt/dtk/env.sh
# Runs Mixtral 8x7B model
silencealiang's avatar
add  
silencealiang committed
14
export CUDA_DEVICE_MAX_CONNECTIONS=1
xingjinliang's avatar
xingjinliang committed
15
16
17
export HSA_FORCE_FINE_GRAIN_PCIE=1
export OMP_NUM_THREADS=1
export GPU_MAX_HW_QUEUES=10
silencealiang's avatar
add  
silencealiang committed
18

xingjinliang's avatar
xingjinliang committed
19
export NCCL_ALGO=Ring
silencealiang's avatar
add  
silencealiang committed
20
21
22
23
24
25
26
27
export NCCL_MIN_NCHANNELS=32
export NCCL_MAX_NCHANNELS=32
export NCCL_NET_GDR_LEVEL=7
export NCCL_NET_GDR_READ=1
export RCCL_SDMA_COPY_ENABLE=0
export NCCL_IB_HCA=mlx5_2:1,mlx5_3:1,mlx5_4:1,mlx5_5:1,mlx5_6:1,mlx5_7:1,mlx5_8:1,mlx5_9:1
#export NCCL_TOPO_FILE="/public/home/xingjl/dependency/rccl-tests-0204/topo-input.xml"
export GROUPED_GEMM_BatchLinear=1
silencealiang's avatar
silencealiang committed
28
29
export GLOG_minloglevel=3

xingjinliang's avatar
xingjinliang committed
30
31
32
33
34
35
36
RANK=$OMPI_COMM_WORLD_RANK
LOCAL_RANK=$OMPI_COMM_WORLD_LOCAL_RANK
WORLD_SIZE=$OMPI_COMM_WORLD_SIZE
DIST_URL=${1}
DIST_PORT=25900

CHECKPOINT_PATH=./CKPT 
silencealiang's avatar
silencealiang committed
37
38
TOKENIZER_MODEL=./mixtral_dataset/tokenizer.model
DATA_PATH=./mixtral_dataset/my-mixtral_text_document
xingjinliang's avatar
xingjinliang committed
39
40
41
42
43
44
45
46
47
48
49
50
51

DISTRIBUTED_ARGS=(
    --rank ${RANK}
    --world-size ${WORLD_SIZE}
    --local-rank ${LOCAL_RANK}
    --dist-url tcp://${DIST_URL}:${DIST_PORT}
)

MODEL_ARGS=(
    --use-mcore-models
    --disable-bias-linear
    --seq-length 4096
    --max-position-embeddings 32768
silencealiang's avatar
add  
silencealiang committed
52
53
    --num-layers 4
    --hidden-size 4096
xingjinliang's avatar
xingjinliang committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    --ffn-hidden-size 14336
    --num-attention-heads 32
    --init-method-std 0.01
    --attention-dropout 0.0
    --hidden-dropout 0.0
    --normalization RMSNorm
    --position-embedding-type rope
    --swiglu
    --untie-embeddings-and-output-weights
    --group-query-attention
    --num-query-groups 8
    --no-masked-softmax-fusion
    --no-position-embedding
    --rotary-base 1000000
)

MOE_ARGS=(
    --num-experts 8
    --moe-router-topk 2
    --moe-router-load-balancing-type aux_loss
    --moe-aux-loss-coeff 1e-2
    --moe-token-dispatcher-type alltoall
    --moe-expert-capacity-factor 0.5
    --moe-pad-expert-input-to-capacity
    --moe-grouped-gemm
)

DATA_ARGS=(
    --tokenizer-type Llama2Tokenizer
    --tokenizer-model ${TOKENIZER_MODEL}
    --data-path $DATA_PATH
    --split 99990,8,2
)

TRAINING_ARGS=(
    --micro-batch-size 1
silencealiang's avatar
add  
silencealiang committed
90
    --global-batch-size 256
xingjinliang's avatar
xingjinliang committed
91
    --lr 1e-4
silencealiang's avatar
silencealiang committed
92
    --train-iters 10
xingjinliang's avatar
xingjinliang committed
93
94
95
96
97
98
99
    --lr-decay-iters 320000
    --lr-decay-style cosine
    --min-lr 1.0e-5
    --weight-decay 0.1
    --lr-warmup-iters 500
    --clip-grad 1.0
    --bf16
silencealiang's avatar
silencealiang committed
100
101
102
103
104
105
    --overlap-param-gather
    --overlap-grad-reduce
)

TORCH_PROFIE_ARGS=(
    --profile
silencealiang's avatar
add  
silencealiang committed
106
    --profile-ranks 0 1 2 3 4 5 6 7 8
silencealiang's avatar
silencealiang committed
107
108
    --profile-step-start 3
    --profile-step-end 4
silencealiang's avatar
add  
silencealiang committed
109
    --profile-dir torch_prof_mixtral_1nodes
silencealiang's avatar
silencealiang committed
110
111
112
113
114
    --use-pytorch-profiler
)

HIP_PROFIE_ARGS=(
    --profile
silencealiang's avatar
add  
silencealiang committed
115
    --profile-ranks 0 1 2 3 4 5 6 7 8
silencealiang's avatar
silencealiang committed
116
117
118
    --profile-step-start 4
    --profile-step-end 5
    --use-hip-profiler
xingjinliang's avatar
xingjinliang committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
)

MODEL_PARALLEL_ARGS=(
    --tensor-model-parallel-size 2
    --pipeline-model-parallel-size 1
    --expert-model-parallel-size 2
    --expert-tensor-parallel-size 1
    --use-distributed-optimizer
    --sequence-parallel
)

LOGGING_ARGS=(
    --log-throughput \
    --log-interval 1 \
    --save-interval 10000 \
    --eval-interval 1000 \
    --eval-iters -1 \
    #--save $CHECKPOINT_PATH \
    #--load $CHECKPOINT_PATH \
    --tensorboard-dir "${CHECKPOINT_PATH}/tensorboard" \
    --no-load-optim \
    --no-load-rng
)

if [ -n "${WANDB_API_KEY}" ]; then
    LOGGING_ARGS+=(
        --wandb-project ${WANDB_PROJECT:-"Mixtral"}
        --wandb-exp-name ${WANDB_NAME:-"Mixtral_8x7B"}
    )
fi

APP="python3 -u pretrain_gpt.py \
    ${DISTRIBUTED_ARGS[@]} \
    ${MODEL_ARGS[@]} \
    ${MOE_ARGS[@]} \
    ${DATA_ARGS[@]} \
    ${TRAINING_ARGS[@]} \
    ${MODEL_PARALLEL_ARGS[@]} \
    ${LOGGING_ARGS[@]} \
    "

silencealiang's avatar
silencealiang committed
160
161
162
163
164
165
166
167
if [[ $profiling == "torch" ]]; then
    APP+=" ${TORCH_PROFIE_ARGS[@]}"
elif [[ $profiling == "hip" ]]; then
    mkdir -p hip_prof_data
    APP+=" ${HIP_PROFIE_ARGS[@]}"
    APP="hipprof -d hip_prof_data --hip-trace --trace-off ${APP}"
fi

xingjinliang's avatar
xingjinliang committed
168
169
170
171
#for hygon cpu
case ${LOCAL_RANK} in
[0])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
silencealiang's avatar
silencealiang committed
172
173
  ${APP}
  #numactl --cpunodebind=0 --membind=0 ${APP}
xingjinliang's avatar
xingjinliang committed
174
175
176
  ;;
[1])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
silencealiang's avatar
silencealiang committed
177
178
  ${APP}
  #numactl --cpunodebind=1 --membind=1 ${APP}
xingjinliang's avatar
xingjinliang committed
179
180
181
  ;;
[2])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
silencealiang's avatar
silencealiang committed
182
183
  ${APP}
  #numactl --cpunodebind=2 --membind=2 ${APP}
xingjinliang's avatar
xingjinliang committed
184
185
186
  ;;
[3])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
silencealiang's avatar
silencealiang committed
187
188
  ${APP}
  #numactl --cpunodebind=3 --membind=3 ${APP}
xingjinliang's avatar
xingjinliang committed
189
190
191
  ;;
[4])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
silencealiang's avatar
silencealiang committed
192
193
  ${APP}
  #numactl --cpunodebind=4 --membind=4 ${APP}
xingjinliang's avatar
xingjinliang committed
194
195
196
  ;;
[5])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
silencealiang's avatar
silencealiang committed
197
198
  ${APP}
  #numactl --cpunodebind=5 --membind=5 ${APP}
xingjinliang's avatar
xingjinliang committed
199
200
201
  ;;
[6])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
silencealiang's avatar
silencealiang committed
202
203
  ${APP}
  #numactl --cpunodebind=6 --membind=6 ${APP}
xingjinliang's avatar
xingjinliang committed
204
205
206
  ;;
[7])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
silencealiang's avatar
silencealiang committed
207
208
  ${APP}
  #numactl --cpunodebind=7 --membind=7 ${APP}
xingjinliang's avatar
xingjinliang committed
209
210
211
  ;;
esac