api.py 4.42 KB
Newer Older
mshoeybi's avatar
working  
mshoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Inference API."""


import torch

mshoeybi's avatar
mshoeybi committed
21
from megatron import mpu
mshoeybi's avatar
working  
mshoeybi committed
22
23
from .communication import broadcast_float_list
from .generation import generate_tokens_probs_and_return_on_first_stage
mshoeybi's avatar
mshoeybi committed
24
25
26
27
28
from .tokenization import (
    tokenize_prompts,
    detokenize_generations)


mshoeybi's avatar
mshoeybi committed
29

mshoeybi's avatar
mshoeybi committed
30
31
32
33
def generate_and_post_process(model,
                              prompts=None,
                              tokens_to_generate=0,
                              return_output_log_probs=False,
mshoeybi's avatar
mshoeybi committed
34
35
                              top_k_sampling=0,
                              top_p_sampling=0.0,
mshoeybi's avatar
mshoeybi committed
36
                              temperature=1.0,
mshoeybi's avatar
mshoeybi committed
37
38
                              add_BOS=False,
                              use_eod_token_for_early_termination=True):
mshoeybi's avatar
mshoeybi committed
39
    """Run inference and post-process outputs, i.e., detokenize,
mshoeybi's avatar
mshoeybi committed
40
    move to cpu and convert to list."""
mshoeybi's avatar
mshoeybi committed
41
42

    # Main inference.
mshoeybi's avatar
mshoeybi committed
43
    tokens, lengths, output_log_probs = generate(
mshoeybi's avatar
mshoeybi committed
44
45
46
47
        model,
        prompts=prompts,
        tokens_to_generate=tokens_to_generate,
        return_output_log_probs=return_output_log_probs,
mshoeybi's avatar
mshoeybi committed
48
49
        top_k_sampling=top_k_sampling,
        top_p_sampling=top_p_sampling,
mshoeybi's avatar
mshoeybi committed
50
        temperature=temperature,
mshoeybi's avatar
mshoeybi committed
51
52
        add_BOS=add_BOS,
        use_eod_token_for_early_termination=use_eod_token_for_early_termination)
mshoeybi's avatar
mshoeybi committed
53
54
55
56
57
58
59
60
61
62
63

    # Only post-process on first stage.
    if mpu.is_pipeline_first_stage():

        tokens, prompts_plus_generations, prompts_plus_generations_segments = \
            detokenize_generations(tokens, lengths, True)

        if return_output_log_probs:
            output_log_probs = output_log_probs.cpu().numpy().tolist()

        return prompts_plus_generations, prompts_plus_generations_segments, \
mshoeybi's avatar
mshoeybi committed
64
            output_log_probs, tokens
mshoeybi's avatar
mshoeybi committed
65
66

    return None
mshoeybi's avatar
working  
mshoeybi committed
67
68


mshoeybi's avatar
mshoeybi committed
69

mshoeybi's avatar
working  
mshoeybi committed
70
71
72
73
def generate(model,
             prompts=None,
             tokens_to_generate=0,
             return_output_log_probs=False,
mshoeybi's avatar
mshoeybi committed
74
75
             top_k_sampling=0,
             top_p_sampling=0.0,
mshoeybi's avatar
mshoeybi committed
76
             temperature=1.0,
mshoeybi's avatar
mshoeybi committed
77
78
79
80
81
82
83
84
85
             add_BOS=False,
             use_eod_token_for_early_termination=True):
    """Given prompts and input parameters, run inference and return:
       tokens: prompts plus the generated tokens.
       lengths: length of the prompt + generations. Note that we can
           discard tokens in the tokens tensor that are after the
           corresponding length.
       output_log_probs: log probs of the tokens.
    """
mshoeybi's avatar
working  
mshoeybi committed
86
87

    # Make sure input params are avaialble to all ranks.
mshoeybi's avatar
mshoeybi committed
88
    values = [tokens_to_generate, return_output_log_probs,
mshoeybi's avatar
mshoeybi committed
89
              top_k_sampling, top_p_sampling,
mshoeybi's avatar
mshoeybi committed
90
              temperature, add_BOS, use_eod_token_for_early_termination]
mshoeybi's avatar
mshoeybi committed
91
    values_float_tensor = broadcast_float_list(7, float_list=values)
mshoeybi's avatar
working  
mshoeybi committed
92
93
    tokens_to_generate = int(values_float_tensor[0].item())
    return_output_log_probs = bool(values_float_tensor[1].item())
mshoeybi's avatar
mshoeybi committed
94
95
96
97
98
    top_k_sampling = int(values_float_tensor[2].item())
    top_p_sampling = values_float_tensor[3].item()
    temperature = values_float_tensor[4].item()
    add_BOS = bool(values_float_tensor[5].item())
    use_eod_token_for_early_termination = bool(values_float_tensor[6].item())
mshoeybi's avatar
working  
mshoeybi committed
99
100
101
102
103

    # Tokenize prompts and get the batch.
    # Note that these tensors are broadcaseted to all ranks.
    if torch.distributed.get_rank() == 0:
        assert prompts is not None
mshoeybi's avatar
mshoeybi committed
104
        assert tokens_to_generate > 0
mshoeybi's avatar
working  
mshoeybi committed
105
    context_tokens_tensor, context_length_tensor = tokenize_prompts(
mshoeybi's avatar
mshoeybi committed
106
        prompts=prompts, tokens_to_generate=tokens_to_generate, add_BOS=add_BOS)
mshoeybi's avatar
working  
mshoeybi committed
107
108
109
110
111
112

    # Main inference function.
    # Note that the outputs are available on the first stage.
    return generate_tokens_probs_and_return_on_first_stage(
        model, context_tokens_tensor, context_length_tensor,
        return_output_log_probs=return_output_log_probs,
mshoeybi's avatar
mshoeybi committed
113
114
        top_k=top_k_sampling,
        top_p=top_p_sampling,
mshoeybi's avatar
mshoeybi committed
115
116
        temperature=temperature,
        use_eod_token_for_early_termination=use_eod_token_for_early_termination)