pretrain_ict.py 5.94 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain BERT for Inverse Cloze Task"""
Mostofa Patwary's avatar
Mostofa Patwary committed
17
18
import sys
import math
19
20

import torch
Neel Kant's avatar
Neel Kant committed
21
import torch.distributed as dist
22
23
import torch.nn.functional as F

Neel Kant's avatar
Neel Kant committed
24
25
from megatron import get_args
from megatron import print_rank_0
26
from megatron import get_timers
27
from megatron import mpu
28
from megatron.data.dataset_utils import build_train_valid_test_datasets
29
from megatron.training import pretrain
30
from megatron.utils import average_losses_across_data_parallel_group
Mostofa Patwary's avatar
Mostofa Patwary committed
31
32
from megatron.model.biencoder_model import biencoder_model_provider
from megatron.data.biencoder_dataset_utils import get_ict_batch
33
34


Neel Kant's avatar
Neel Kant committed
35
def pretrain_ict_model_provider():
36
    args = get_args()
Mostofa Patwary's avatar
Mostofa Patwary committed
37
38
39
    model = biencoder_model_provider(
                only_context_model=False,
                only_query_model=False,
Mostofa Patwary's avatar
Mostofa Patwary committed
40
                shared_query_context_model=args.shared_query_context_model)
Mostofa Patwary's avatar
Mostofa Patwary committed
41
    return model
42

mohammad's avatar
mohammad committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
def get_group_world_size_rank():

    group = mpu.get_data_parallel_group()
    rank = torch.distributed.get_rank(group=group)
    world_size = torch.distributed.get_world_size(group=group)

    return group, rank, world_size


class AllgatherFromDataParallelRegion(torch.autograd.Function):

    @staticmethod
    def forward(ctx, input_):
        assert input_.dim() == 2
        group, rank, world_size = get_group_world_size_rank()

        tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
        tensor_list[rank] = input_
        torch.distributed.all_gather(tensor_list, input_, group=group)

        output = torch.cat(tensor_list, dim=0).contiguous()

        return output


    @staticmethod
    def backward(ctx, grad_output):
        group, rank, world_size = get_group_world_size_rank()

72
73
74
        assert grad_output.shape[0] % world_size == 0
        dim_size = grad_output.shape[0] // world_size
        output_list = torch.split(grad_output, dim_size, dim=0)
mohammad's avatar
mohammad committed
75

76
77
        # get chunk from this rank
        output = output_list[rank].contiguous()
mohammad's avatar
mohammad committed
78
79
        return output

80
def forward_step(data_iterator, model, input_tensor):
81
    """Forward step."""
Neel Kant's avatar
Neel Kant committed
82
    args = get_args()
83
    timers = get_timers()
84
85

    # Get the batch.
mohammad's avatar
mohammad committed
86
    timers('batch-generator').start()
Mostofa Patwary's avatar
Mostofa Patwary committed
87
88
    query_tokens, query_mask, \
    context_tokens, context_mask, context_indices = get_ict_batch(data_iterator)
mohammad's avatar
mohammad committed
89
    timers('batch-generator').stop()
90

Mostofa Patwary's avatar
Mostofa Patwary committed
91
92
93
    # Query and Context Types
    query_types = torch.cuda.LongTensor(*query_tokens.shape).fill_(0)
    context_types = torch.cuda.LongTensor(*context_tokens.shape).fill_(0)
94

Mostofa Patwary's avatar
Mostofa Patwary committed
95
96
97
98
    # Forward model.
    query_logits, context_logits = model(query_tokens, query_mask,
                                    query_types, context_tokens,
                                    context_mask, context_types)
Neel Kant's avatar
Neel Kant committed
99

Mostofa Patwary's avatar
Mostofa Patwary committed
100
101
    micro_batch_size = query_logits.shape[0]
    # recall we assert that tensor_model_parallel_size == 1
102
103
    global_batch_size = dist.get_world_size() * micro_batch_size
    all_query_logits = AllgatherFromDataParallelRegion.apply(query_logits)
Mostofa Patwary's avatar
Mostofa Patwary committed
104
    all_context_logits = AllgatherFromDataParallelRegion.apply(context_logits) 
Mostofa Patwary's avatar
Mostofa Patwary committed
105
106
107
108
109
110
111
112
113
114
115

    # scores are inner products between query and context embeddings
    retrieval_scores = torch.matmul(all_query_logits,
                        torch.transpose(all_context_logits, 0, 1))
    # scaling the retriever scores
    if args.retriever_score_scaling:
        retrieval_scores = retrieval_scores / math.sqrt(args.hidden_size)

    softmax_scores = F.log_softmax(retrieval_scores, dim=1)
    sorted_vals, sorted_indices = torch.topk(softmax_scores,
                                    k=softmax_scores.shape[1], sorted=True)
116

117
    def topk_accuracy(k):
Mostofa Patwary's avatar
Mostofa Patwary committed
118
119
        return torch.cuda.FloatTensor([sum([int(i in sorted_indices[i, :k]) \
            for i in range(global_batch_size)]) / global_batch_size])
Neel Kant's avatar
Neel Kant committed
120

121
122
    topk_accs = [topk_accuracy(int(k)) for k in args.report_topk_accuracies]

Mostofa Patwary's avatar
Mostofa Patwary committed
123
124
125
126
127
128
    labels = torch.arange(global_batch_size).long().cuda()
    loss = F.nll_loss(softmax_scores, labels, reduction='mean')
    reduced_losses = average_losses_across_data_parallel_group([loss, *topk_accs])

    # Scale the retrieval loss
    loss = loss * mpu.get_data_parallel_world_size()
129

Mostofa Patwary's avatar
Mostofa Patwary committed
130
131
132
133
134
    # create stats_dict with retrieval loss and all specified top-k accuracies
    topk_acc_dict = {'top{}_acc'.format(k): v * 100 for k, v in \
                        zip(args.report_topk_accuracies, reduced_losses[1:])}
    stats_dict = dict(loss=reduced_losses[0], **topk_acc_dict)
    return loss, stats_dict
135
136


Neel Kant's avatar
Neel Kant committed
137
138
def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid and test datasets."""
139
    args = get_args()
Neel Kant's avatar
Neel Kant committed
140
    print_rank_0('> building train, validation, and test datasets '
Neel Kant's avatar
Neel Kant committed
141
                 'for BERT ICT...')
142

Neel Kant's avatar
Neel Kant committed
143
144
145
146
147
148
149
150
151
152
    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        max_seq_length=args.seq_length,
        masked_lm_prob=args.mask_prob,
        short_seq_prob=args.short_seq_prob,
        seed=args.seed,
        skip_warmup=(not args.mmap_warmup),
Mostofa Patwary's avatar
Mostofa Patwary committed
153
        binary_head=False,
154
        dataset_type='ict')
Neel Kant's avatar
Neel Kant committed
155
    print_rank_0("> finished creating BERT ICT datasets ...")
156

Neel Kant's avatar
Neel Kant committed
157
    return train_ds, valid_ds, test_ds
158
159
160


if __name__ == "__main__":
Mostofa Patwary's avatar
Mostofa Patwary committed
161
162
163
    pretrain(train_valid_test_datasets_provider,
             pretrain_ict_model_provider,
             forward_step,
164
             args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})