__init__.py 5.56 KB
Newer Older
mohammad's avatar
mohammad committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from apex.optimizers import FusedAdam as Adam
17
from apex.optimizers import FusedSGD as SGD
mohammad's avatar
mohammad committed
18

mohammad's avatar
mohammad committed
19
from megatron import get_args
20
from megatron.model import LayerNorm
mohammad's avatar
mohammad committed
21
22

from .grad_scaler import ConstantGradScaler, DynamicGradScaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
23
from .optimizer import Float16OptimizerWithFloat16Params, FP32Optimizer
mohammad's avatar
mohammad committed
24
25


26
27
28
29
30
31
32
33
def get_param_groups(modules,
                     no_weight_decay_cond,
                     scale_lr_cond,
                     lr_mult):
    """creates param groups based on weight decay condition (regularized vs non regularized)
       and learning rate scale condition (args.lr vs lr_mult * args.lr)
       scale_lr_cond is used during finetuning where head of the network requires a scaled
       version of the base learning rate. 
mohammad's avatar
mohammad committed
34
    """
35
36
37
38
    wd_no_scale_lr = []
    wd_scale_lr = []
    no_wd_no_scale_lr = []
    no_wd_scale_lr = []
39
    for module in modules:
40
41
42
43
44
45
        for name, param in module.named_parameters():
            if not param.requires_grad:
                continue

            if no_weight_decay_cond is not None:
                no_wd = no_weight_decay_cond(name, param)
46
            else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
47
                # do not regularize biases nor Norm parameters
48
                no_wd = name.endswith(".bias") or len(param.shape) == 1
mohammad's avatar
mohammad committed
49

50
51
52
53
            if scale_lr_cond is not None:
                scale_lr = scale_lr_cond(name, param)
            else:
                scale_lr = False
mohammad's avatar
mohammad committed
54

55
56
57
58
59
60
61
62
            if not no_wd and not scale_lr:
                wd_no_scale_lr.append(param)
            elif not no_wd and scale_lr:
                wd_scale_lr.append(param)
            elif no_wd and not scale_lr:
                no_wd_no_scale_lr.append(param)
            else:
                no_wd_scale_lr.append(param)
mohammad's avatar
mohammad committed
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    param_groups = []
    if len(wd_no_scale_lr):
        param_groups.append({'params': wd_no_scale_lr, 'wd_mult': 1.0, 'lr_mult': 1.0})
    if len(wd_scale_lr):
        param_groups.append({'params': wd_scale_lr, 'wd_mult': 1.0, 'lr_mult': lr_mult})
    if len(no_wd_no_scale_lr):
        param_groups.append({'params': no_wd_no_scale_lr, 'wd_mult': 0.0, 'lr_mult': 1.0})
    if len(no_wd_scale_lr):
        param_groups.append({'params': no_wd_scale_lr, 'wd_mult': 0.0, 'lr_mult': lr_mult})

    return param_groups

def get_megatron_optimizer(model,
                           no_weight_decay_cond=None,
                           scale_lr_cond=None,
                           lr_mult=1.0):
mohammad's avatar
mohammad committed
80
81
82
    args = get_args()

    # Base optimizer.
83
84
85
86
87
    param_groups = get_param_groups(model,
                                    no_weight_decay_cond,
                                    scale_lr_cond,
                                    lr_mult)

88
89
90
91
92
93
    if args.optimizer == 'adam':
        optimizer = Adam(param_groups,
                         lr=args.lr,
                         weight_decay=args.weight_decay,
                         betas=(args.adam_beta1, args.adam_beta2),
                         eps=args.adam_eps)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
94
    elif args.optimizer == 'sgd':
95
96
97
98
        optimizer = SGD(param_groups,
                        lr=args.lr,
                        weight_decay=args.weight_decay,
                        momentum=args.sgd_momentum)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
99
100
    else:
        raise Exception('{} optimizer is not supported.'.format(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
101
            args.optimizer))
mohammad's avatar
mohammad committed
102

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    # Determine whether the params have main-grad field.
    params_have_main_grad = False
    if args.DDP_impl == 'local':
        params_have_main_grad = True

    if args.fp16 or args.bf16:

        # Grad scaler:
        #    if loss-scale is provided, instantiate the constant scaler.
        #    if we are using fp16 and loss-scale is not present, use a
        #       dynamic scaler.
        #    otherwise we are running in bf16 with no loss-scale so
        #       leave it as None.
        grad_scaler = None
mohammad's avatar
mohammad committed
117
118
119
120
121
        # Constant loss scale.
        if args.loss_scale:
            grad_scaler = ConstantGradScaler(args.loss_scale)
        # Dynamic loss scale.
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
122
123
124
125
126
127
128
129
130
            if args.fp16:
                grad_scaler = DynamicGradScaler(
                    initial_scale=args.initial_loss_scale,
                    min_scale=args.min_loss_scale,
                    growth_factor=2.0,
                    backoff_factor=0.5,
                    growth_interval=args.loss_scale_window,
                    hysteresis=args.hysteresis)

mohammad's avatar
mohammad committed
131
        # Megatron optimizer.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
132
133
134
135
        return Float16OptimizerWithFloat16Params(optimizer,
                                                 args.clip_grad,
                                                 args.log_num_zeros_in_grad,
                                                 params_have_main_grad,
136
                                                 args.use_contiguous_buffers_in_local_ddp,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
137
138
                                                 args.bf16,
                                                 grad_scaler)
mohammad's avatar
mohammad committed
139
140

    # FP32.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
141
142
    return FP32Optimizer(optimizer, args.clip_grad,
                         args.log_num_zeros_in_grad,
143
                         params_have_main_grad,
144
                         args.use_contiguous_buffers_in_local_ddp)