clip_grads.py 7.68 KB
Newer Older
mohammad's avatar
mohammad committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Gradient clipping."""

import torch
from torch._six import inf

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
24
25
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
mohammad's avatar
mohammad committed
26
27


28
def clip_grad_norm_fp32(parameters, max_norm, norm_type=2,
Lawrence McAfee's avatar
Lawrence McAfee committed
29
                        model_parallel_group=None):
mohammad's avatar
mohammad committed
30
31
32
33
34
35
36
37
38
39
40
41
42
    """Clips gradient norm of an iterable of parameters whose gradients
       are in fp32.

    This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
    added functionality to handle model parallel parameters. Note that
    the gradients are modified in place.

    Arguments:
        parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
            single Tensor that will have gradients normalized
        max_norm (float or int): max norm of the gradients
        norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
            infinity norm.
Lawrence McAfee's avatar
Lawrence McAfee committed
43
        model_parallel_group (group): given the nature of the distributed
44
            optimizer, this is passed as an argument.
mohammad's avatar
mohammad committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

    Returns:
        Total norm of the parameters (viewed as a single vector).
    """

    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]

    # Filter parameters based on:
    #   - grad should not be none
    #   - parameter should not be shared
    #   - should not be a replica due to tensor model parallelism
    grads = []
    grads_for_norm = []
    for param in parameters:
        grad_not_none = param.grad is not None
mohammad's avatar
mohammad committed
61
62
        is_not_shared = param_is_not_shared(param)
        is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
63
64
        if grad_not_none:
            grad = param.grad.detach()
mohammad's avatar
mohammad committed
65
        if grad_not_none:
66
67
            # Make sure the grads are in fp32
            assert param.grad.type() == 'torch.cuda.FloatTensor'
mohammad's avatar
mohammad committed
68
69
70
            grads.append(grad)
        if grad_not_none and is_not_shared and is_not_tp_duplicate:
            grads_for_norm.append(grad)
Lawrence McAfee's avatar
Lawrence McAfee committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        # >>>
        else:
            # from lutil import pax
            # pax({"grad": grad})
            from megatron import get_args
            args = get_args()
            for r in range(torch.distributed.get_world_size()):
                if torch.distributed.get_rank() == r:
                    print("collect: r %d, dist-op %d, np %d, ne %d, g %s" % (
                        torch.distributed.get_rank(),
                        args.use_distributed_optimizer,
                        len(parameters),
                        sum(t.nelement() for t in parameters),
                        str(tuple(grad.shape)),
                    ))
                torch.distributed.barrier()
            exit(0)
        # <<<
mohammad's avatar
mohammad committed
89
90
91
92
93
94
95
96
97
98
99
100
101

    # Norm parameters.
    max_norm = float(max_norm)
    norm_type = float(norm_type)
    total_norm = 0.0

    # Calculate norm.
    if norm_type == inf:
        total_norm = max(grad.abs().max() for grad in grads_for_norm)
        total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
        # Take max across all model-parallel GPUs.
        torch.distributed.all_reduce(total_norm_cuda,
                                     op=torch.distributed.ReduceOp.MAX,
102
                                     group=model_parallel_group)
mohammad's avatar
mohammad committed
103
104
105
106
107
        total_norm = total_norm_cuda[0].item()

    else:
        if norm_type == 2.0:
            dummy_overflow_buf = torch.cuda.IntTensor([0])
108
109
110
            # Use apex's multi-tensor applier for efficiency reasons.
            # Multi-tensor applier takes a function and a list of list
            # and performs the operation on that list all in one kernel.
mohammad's avatar
mohammad committed
111
112
113
114
115
116
            grad_norm, _ = multi_tensor_applier(
                amp_C.multi_tensor_l2norm,
                dummy_overflow_buf,
                [grads_for_norm],
                False # no per-parameter norm
            )
mohammad's avatar
mohammad committed
117
118
            # Since we will be summing across data parallel groups,
            # we need the pow(norm-type).
mohammad's avatar
mohammad committed
119
120
            total_norm = grad_norm ** norm_type

Lawrence McAfee's avatar
Lawrence McAfee committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
            # >>>
            from megatron import get_args
            from lutil import pax
            args = get_args()
            for r in range(torch.distributed.get_world_size()):
                if torch.distributed.get_rank() == r:
                    print("compute: r %d, dist-op %d, gnorm %f ... p %d, g %d, gn %d" % (
                        torch.distributed.get_rank(),
                        args.use_distributed_optimizer,
                        grad_norm.item(),
                        sum(t.nelement() for t in parameters),
                        sum(t.nelement() for t in grads),
                        sum(t.nelement() for t in grads_for_norm),
                    ))
                torch.distributed.barrier()
            exit(0)
            # pax(2, {
            #     "use distrib opt" : args.use_distributed_optimizer,
            #     "norm_type" : norm_type,
            #     "grad_norm" : grad_norm.item(),
            #     "total_norm" : total_norm.item(),
            # })
            # <<<

mohammad's avatar
mohammad committed
145
146
147
148
149
150
        else:
            for grad in grads_for_norm:
                grad_norm = torch.norm(grad, norm_type)
                total_norm += grad_norm ** norm_type

        # Sum across all model-parallel GPUs.
151
152
153
        torch.distributed.all_reduce(total_norm,
                                     op=torch.distributed.ReduceOp.SUM,
                                     group=model_parallel_group)
mohammad's avatar
mohammad committed
154
155
        total_norm = total_norm.item() ** (1.0 / norm_type)

Lawrence McAfee's avatar
Lawrence McAfee committed
156
157
158
159
160
161
162
163
164
165
166
        # >>>
        from megatron import get_args
        from lutil import pax
        args = get_args()
        pax(0, {
            "use distrib opt" : args.use_distributed_optimizer,
            "norm_type" : norm_type,
            "total_norm" : total_norm,
        })
        # <<<

mohammad's avatar
mohammad committed
167
168
169
170
171
172
173
174
175
176
    # Scale.
    clip_coeff = max_norm / (total_norm + 1.0e-6)
    if clip_coeff < 1.0:
        dummy_overflow_buf = torch.cuda.IntTensor([0])
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             dummy_overflow_buf,
                             [grads, grads],
                             clip_coeff)

    return total_norm
Rewon Child's avatar
Rewon Child committed
177
178


179
def count_zeros_fp32(parameters, model_parallel_group):
Rewon Child's avatar
Rewon Child committed
180
181
182
183
184
185
186
187

    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]

    # Filter parameters based on:
    #   - grad should not be none
    #   - parameter should not be shared
    #   - should not be a replica due to tensor model parallelism
Rewon Child's avatar
Rewon Child committed
188
    total_num_zeros = 0.0
Rewon Child's avatar
Rewon Child committed
189
190
191
192
193
194
    for param in parameters:
        grad_not_none = param.grad is not None
        is_not_shared = param_is_not_shared(param)
        is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
        if grad_not_none and is_not_shared and is_not_tp_duplicate:
            grad = param.grad.detach()
Rewon Child's avatar
Rewon Child committed
195
196
            num_zeros = grad.numel() - torch.count_nonzero(grad)
            total_num_zeros = num_zeros + total_num_zeros
Rewon Child's avatar
Rewon Child committed
197
198

    # Sum across all model-parallel GPUs.
199
200
201
    torch.distributed.all_reduce(total_num_zeros,
                                 op=torch.distributed.ReduceOp.SUM,
                                 group=model_parallel_group)
202

Rewon Child's avatar
Rewon Child committed
203
204
205
    total_num_zeros = total_num_zeros.item()

    return total_num_zeros