pretrain_bert.py 3.73 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
16
"""Pretrain BERT"""
Raul Puri's avatar
Raul Puri committed
17
18

import torch
19
import torch.nn.functional as F
Raul Puri's avatar
Raul Puri committed
20

21
from megatron import get_args, print_rank_0
Mohammad's avatar
Mohammad committed
22
from megatron import get_timers
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
23
from megatron import mpu
24
from megatron.data.dataset_utils import build_train_valid_test_datasets
Mohammad's avatar
Mohammad committed
25
26
27
28
29
from megatron.model import BertModel
from megatron.training import pretrain
from megatron.utils import reduce_losses


Mohammad's avatar
Mohammad committed
30
def model_provider():
Raul Puri's avatar
Raul Puri committed
31
32
    """Build the model."""

33
    print_rank_0('building BERT model ...')
Raul Puri's avatar
Raul Puri committed
34

35
    model = BertModel(
Mohammad's avatar
Mohammad committed
36
        num_tokentypes=2,
Mohammad's avatar
Mohammad committed
37
38
        add_binary_head=True,
        parallel_output=True)
Raul Puri's avatar
Raul Puri committed
39

40
    return model
Raul Puri's avatar
Raul Puri committed
41
42


Mohammad's avatar
Mohammad committed
43
def get_batch(data_iterator):
44
    """Build the batch."""
45

46
    # Items and their type.
47
    keys = ['text', 'types', 'labels', 'is_random', 'loss_mask', 'padding_mask']
48
49
50
51
52
53
54
55
56
57
58
59
    datatype = torch.int64

    # Broadcast data.
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens = data_b['text'].long()
    types = data_b['types'].long()
60
61
62
63
    sentence_order = data_b['is_random'].long()
    loss_mask = data_b['loss_mask'].float()
    lm_labels = data_b['labels'].long()
    padding_mask = data_b['padding_mask'].long()
Raul Puri's avatar
Raul Puri committed
64

65
    return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask
Raul Puri's avatar
Raul Puri committed
66
67


Mohammad's avatar
Mohammad committed
68
def forward_step(data_iterator, model):
Raul Puri's avatar
Raul Puri committed
69
    """Forward step."""
mohammad's avatar
mohammad committed
70
    args = get_args()
Mohammad's avatar
Mohammad committed
71
    timers = get_timers()
Raul Puri's avatar
Raul Puri committed
72
73

    # Get the batch.
74
    timers('batch generator').start()
75
    tokens, types, sentence_order, loss_mask, lm_labels, padding_mask \
Mohammad's avatar
Mohammad committed
76
        = get_batch(data_iterator)
77
    timers('batch generator').stop()
78

mohammad's avatar
mohammad committed
79
    # Forward model. lm_labels
mohammad's avatar
mohammad committed
80
81
82
    lm_loss_, sop_logits = model(tokens, padding_mask,
                                 tokentype_ids=types,
                                 lm_labels=lm_labels)
83

mohammad's avatar
mohammad committed
84
85
    sop_loss = F.cross_entropy(sop_logits.view(-1, 2).float(),
                               sentence_order.view(-1),
86
87
                               ignore_index=-1)

Raul Puri's avatar
Raul Puri committed
88
    lm_loss = torch.sum(
89
        lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()
Raul Puri's avatar
Raul Puri committed
90

91
    loss = lm_loss + sop_loss
Raul Puri's avatar
Raul Puri committed
92

93
    reduced_losses = reduce_losses([lm_loss, sop_loss])
Raul Puri's avatar
Raul Puri committed
94

95
    return loss, {'lm loss': reduced_losses[0], 'sop loss': reduced_losses[1]}
96
97


98
99
def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
Mohammad's avatar
Mohammad committed
100
    args = get_args()
Mohammad's avatar
Mohammad committed
101

102
103
104
105
106
107
108
109
110
111
112
113
114
    print_rank_0('> building train, validation, and test datasets '
                 'for BERT ...')
    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        max_seq_length=args.seq_length,
        masked_lm_prob=args.mask_prob,
        short_seq_prob=args.short_seq_prob,
        seed=args.seed,
        skip_warmup=(not args.mmap_warmup))
    print_rank_0("> finished creating BERT datasets ...")
115

116
    return train_ds, valid_ds, test_ds
Raul Puri's avatar
Raul Puri committed
117
118
119


if __name__ == "__main__":
120

121
    pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
Mohammad's avatar
Mohammad committed
122
             args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})