# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pretrain BERT""" import torch import torch.nn.functional as F from megatron import get_args, print_rank_0 from megatron import get_timers from megatron import mpu from megatron.data.dataset_utils import build_train_valid_test_datasets from megatron.model import BertModel from megatron.training import pretrain from megatron.utils import reduce_losses def model_provider(): """Build the model.""" print_rank_0('building BERT model ...') model = BertModel( num_tokentypes=2, add_binary_head=True, parallel_output=True) return model def get_batch(data_iterator): """Build the batch.""" # Items and their type. keys = ['text', 'types', 'labels', 'is_random', 'loss_mask', 'padding_mask'] datatype = torch.int64 # Broadcast data. if data_iterator is not None: data = next(data_iterator) else: data = None data_b = mpu.broadcast_data(keys, data, datatype) # Unpack. tokens = data_b['text'].long() types = data_b['types'].long() sentence_order = data_b['is_random'].long() loss_mask = data_b['loss_mask'].float() lm_labels = data_b['labels'].long() padding_mask = data_b['padding_mask'].long() return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask def forward_step(data_iterator, model): """Forward step.""" args = get_args() timers = get_timers() # Get the batch. timers('batch generator').start() tokens, types, sentence_order, loss_mask, lm_labels, padding_mask \ = get_batch(data_iterator) timers('batch generator').stop() # Forward model. lm_labels lm_loss_, sop_logits = model(tokens, padding_mask, tokentype_ids=types, lm_labels=lm_labels) sop_loss = F.cross_entropy(sop_logits.view(-1, 2).float(), sentence_order.view(-1), ignore_index=-1) lm_loss = torch.sum( lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum() loss = lm_loss + sop_loss reduced_losses = reduce_losses([lm_loss, sop_loss]) return loss, {'lm loss': reduced_losses[0], 'sop loss': reduced_losses[1]} def train_valid_test_datasets_provider(train_val_test_num_samples): """Build train, valid, and test datasets.""" args = get_args() print_rank_0('> building train, validation, and test datasets ' 'for BERT ...') train_ds, valid_ds, test_ds = build_train_valid_test_datasets( data_prefix=args.data_path, data_impl=args.data_impl, splits_string=args.split, train_valid_test_num_samples=train_val_test_num_samples, max_seq_length=args.seq_length, masked_lm_prob=args.mask_prob, short_seq_prob=args.short_seq_prob, seed=args.seed, skip_warmup=(not args.mmap_warmup)) print_rank_0("> finished creating BERT datasets ...") return train_ds, valid_ds, test_ds if __name__ == "__main__": pretrain(train_valid_test_datasets_provider, model_provider, forward_step, args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})