pretrain_realm.py 4.08 KB
Newer Older
Neel Kant's avatar
Neel Kant committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain BERT for Inverse Cloze Task"""

import torch
import torch.nn.functional as F

21
from hashed_index import HashedIndex, load_ict_checkpoint, get_ict_dataset
Neel Kant's avatar
Neel Kant committed
22
23
24
25
26
from megatron import get_args
from megatron import get_timers
from megatron import mpu
from megatron import print_rank_0
from megatron.data.bert_dataset import build_train_valid_test_datasets
27
28
from megatron.model import REALMBertModel, REALMRetriever
from megatron.training import pretrain
Neel Kant's avatar
Neel Kant committed
29
30
31
32
from megatron.utils import reduce_losses

num_batches = 0

33

Neel Kant's avatar
Neel Kant committed
34
35
36
def model_provider():
    """Build the model."""
    args = get_args()
37
    print_rank_0('building REALM models ...')
Neel Kant's avatar
Neel Kant committed
38

39
40
    ict_model = load_ict_checkpoint()
    ict_dataset = get_ict_dataset()
Neel Kant's avatar
Neel Kant committed
41
    hashed_index = HashedIndex.load_from_file(args.hash_data_path)
42

43
    retriever = REALMRetriever(ict_model, ict_dataset, hashed_index)
Neel Kant's avatar
Neel Kant committed
44
    # TODO: REALMBertModel should accept a path to a pretrained bert-base
45
    model = REALMBertModel(retriever)
46

47
    return model
Neel Kant's avatar
Neel Kant committed
48
49
50
51


def get_batch(data_iterator):
    # Items and their type.
52
    keys = ['tokens', 'labels', 'loss_mask', 'pad_mask']
Neel Kant's avatar
Neel Kant committed
53
54
55
56
57
58
59
60
61
62
    datatype = torch.int64

    # Broadcast data.
    if data_iterator is None:
        data = None
    else:
        data = next(data_iterator)
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
63
64
65
66
    tokens = data_b['tokens'].long()
    labels = data_b['labels'].long()
    loss_mask = data_b['loss_mask'].long()
    pad_mask = data_b['pad_mask'].long()
Neel Kant's avatar
Neel Kant committed
67

68
    return tokens, labels, loss_mask, pad_mask
Neel Kant's avatar
Neel Kant committed
69
70
71
72
73
74
75
76


def forward_step(data_iterator, model):
    """Forward step."""
    timers = get_timers()

    # Get the batch.
    timers('batch generator').start()
77
    tokens, labels, loss_mask, pad_mask = get_batch(data_iterator)
Neel Kant's avatar
Neel Kant committed
78
79
80
    timers('batch generator').stop()

    # Forward model.
81
82
83
84
    # TODO: MAKE SURE PAD IS NOT 1 - PAD
    lm_logits, block_probs = model(tokens, pad_mask)

    # P(y|x) = sum_z(P(y|z, x) * P(z|x))
Neel Kant's avatar
Neel Kant committed
85
    block_probs = block_probs.unsqueeze(2).unsqueeze(3).expand_as(lm_logits)
Neel Kant's avatar
Neel Kant committed
86
87
88
    #block_probs.register_hook(lambda x: print("block_probs: ", x.shape, flush=True))
    lm_logits = torch.sum(lm_logits * block_probs, dim=1)[:, :labels.shape[1]]

89
90
91
92
93
    lm_loss_ = mpu.vocab_parallel_cross_entropy(lm_logits.contiguous().float(),
                                                labels.contiguous())
    lm_loss = torch.sum(
        lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()

Neel Kant's avatar
Neel Kant committed
94

95
    reduced_loss = reduce_losses([lm_loss])
Neel Kant's avatar
Neel Kant committed
96
    torch.cuda.synchronize()
Neel Kant's avatar
Neel Kant committed
97
    print(reduced_loss, flush=True)
98
    return lm_loss, {'lm_loss': reduced_loss[0]}
Neel Kant's avatar
Neel Kant committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115


def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid and test datasets."""
    args = get_args()
    print_rank_0('> building train, validation, and test datasets '
                 'for BERT ...')

    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        max_seq_length=args.seq_length,
        masked_lm_prob=args.mask_prob,
        short_seq_prob=args.short_seq_prob,
        seed=args.seed,
Neel Kant's avatar
Neel Kant committed
116
117
        skip_warmup=(not args.mmap_warmup),
        dataset_type='realm')
Neel Kant's avatar
Neel Kant committed
118
119
120
121
122
123
124
125
126
    print_rank_0("> finished creating BERT ICT datasets ...")

    return train_ds, valid_ds, test_ds


if __name__ == "__main__":

    pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
             args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})