pretrain_realm.py 5.04 KB
Newer Older
Neel Kant's avatar
Neel Kant committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain BERT for Inverse Cloze Task"""

import torch
import torch.nn.functional as F
20
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
Neel Kant's avatar
Neel Kant committed
21
22
23
24
25

from megatron import get_args
from megatron import get_timers
from megatron import mpu
from megatron import print_rank_0
26
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
Neel Kant's avatar
Neel Kant committed
27
28
from megatron.data.bert_dataset import build_train_valid_test_datasets
from megatron.model import ICTBertModel, REALMBertModel
29
from megatron.training import get_model, pretrain
Neel Kant's avatar
Neel Kant committed
30
from megatron.utils import reduce_losses
31
from pretrain_bert_ict import model_provider as ict_model_provider
Neel Kant's avatar
Neel Kant committed
32
33
34

num_batches = 0

35

Neel Kant's avatar
Neel Kant committed
36
37
38
39
40
def model_provider():
    """Build the model."""
    args = get_args()
    print_rank_0('building BERT models ...')

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    ict_model = get_model(ict_model_provider)

    if isinstance(ict_model, torchDDP):
        model = ict_model.module
    tracker_filename = get_checkpoint_tracker_filename(args.load)
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    assert iteration > 0
    checkpoint_name = get_checkpoint_name(args.load, iteration, False)
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
    ict_model.load_state_dict(state_dict['model'])
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

    realm_model = REALMBertModel(ict_model,
Neel Kant's avatar
Neel Kant committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
                                 args.block_hash_data_path)

    return ict_model


def get_batch(data_iterator):

    # Items and their type.
    keys = ['query_tokens', 'query_types', 'query_pad_mask']
    datatype = torch.int64

    # Broadcast data.
    if data_iterator is None:
        data = None
    else:
        data = next(data_iterator)
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    query_tokens = data_b['query_tokens'].long()
    query_types = data_b['query_types'].long()
    query_pad_mask = data_b['query_pad_mask'].long()

    return query_tokens, query_types, query_pad_mask


def forward_step(data_iterator, model):
    """Forward step."""
    timers = get_timers()

    # Get the batch.
    timers('batch generator').start()
    query_tokens, query_types, query_pad_mask = get_batch(data_iterator)
    timers('batch generator').stop()

    # Forward model.
    query_logits, block_logits = model(query_tokens, query_pad_mask, query_types,
                                       block_tokens, block_pad_mask, block_types).float()

    # [batch x h] * [h x batch]
    retrieval_scores = query_logits.matmul(torch.transpose(block_logits, 0, 1))
    softmaxed = F.softmax(retrieval_scores, dim=1)

    top5_vals, top5_indices = torch.topk(softmaxed, k=5, sorted=True)
    batch_size = softmaxed.shape[0]

    top1_acc = torch.cuda.FloatTensor([sum([int(top5_indices[i, 0] == i) for i in range(batch_size)]) / batch_size])
    top5_acc = torch.cuda.FloatTensor([sum([int(i in top5_indices[i]) for i in range(batch_size)]) / batch_size])

    retrieval_loss = F.cross_entropy(softmaxed, torch.arange(batch_size).cuda())
    reduced_losses = reduce_losses([retrieval_loss, top1_acc, top5_acc])

    return retrieval_loss, {'retrieval loss': reduced_losses[0],
                            'top1_acc': reduced_losses[1],
                            'top5_acc': reduced_losses[2]}


def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid and test datasets."""
    args = get_args()
    print_rank_0('> building train, validation, and test datasets '
                 'for BERT ...')

    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        max_seq_length=args.seq_length,
        masked_lm_prob=args.mask_prob,
        short_seq_prob=args.short_seq_prob,
        seed=args.seed,
Neel Kant's avatar
Neel Kant committed
135
136
        skip_warmup=(not args.mmap_warmup),
        dataset_type='realm')
Neel Kant's avatar
Neel Kant committed
137
138
139
140
141
142
143
144
145
    print_rank_0("> finished creating BERT ICT datasets ...")

    return train_ds, valid_ds, test_ds


if __name__ == "__main__":

    pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
             args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})