gpt_dataset.py 21.8 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2

3
"""GPT style dataset."""
Mohammad's avatar
Mohammad committed
4

5
import os
6
import time
Mohammad's avatar
Mohammad committed
7

8
import numpy as np
9
10
import torch

11
12
from megatron import print_rank_0
from megatron.core import mpu
mohammad's avatar
mohammad committed
13
14
from megatron.data.blendable_dataset import BlendableDataset
from megatron.data.dataset_utils import get_datasets_weights_and_num_samples
Neel Kant's avatar
Neel Kant committed
15
from megatron.data.dataset_utils import get_train_valid_test_split_
16
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
17
18


Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
19
20
def build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
                                    train_valid_test_num_samples,
21
                                    seq_length, seed, skip_warmup,
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
22
23
24
25
                                    train_data_prefix=None,
                                    valid_data_prefix=None,
                                    test_data_prefix=None,
                                    return_doc_ids=False):
26
27
    """Build train, valid, and test datasets."""

28
29
    if data_prefix:
        print_rank_0("Single data path provided for train, valid & test")
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
30

31
32
33
34
35
36
37
38
39
40
        # Single dataset.
        if len(data_prefix) == 1:
            return _build_train_valid_test_datasets(data_prefix[0],
                                                    data_impl, splits_string,
                                                    train_valid_test_num_samples,
                                                    seq_length, seed, skip_warmup)

        # Blending dataset.
        # Parse the values.
        output = get_datasets_weights_and_num_samples(data_prefix,
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
41
                                                      train_valid_test_num_samples)
42
43
44
45
46
47
48
49
50
51
        prefixes, weights, datasets_train_valid_test_num_samples = output

        # Build individual datasets.
        train_datasets = []
        valid_datasets = []
        test_datasets = []
        for i in range(len(prefixes)):
            train_ds, valid_ds, test_ds = _build_train_valid_test_datasets(
                prefixes[i], data_impl, splits_string,
                datasets_train_valid_test_num_samples[i],
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
52
53
                seq_length, seed, skip_warmup,
                return_doc_ids)
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
            if train_ds:
                train_datasets.append(train_ds)
            if valid_ds:
                valid_datasets.append(valid_ds)
            if test_ds:
                test_datasets.append(test_ds)

        # Blend.
        blending_train_dataset = None
        if train_datasets:
            blending_train_dataset = BlendableDataset(train_datasets, weights)
        blending_valid_dataset = None
        if valid_datasets:
            blending_valid_dataset = BlendableDataset(valid_datasets, weights)
        blending_test_dataset = None
        if test_datasets:
            blending_test_dataset = BlendableDataset(test_datasets, weights)

        return (blending_train_dataset, blending_valid_dataset,
                blending_test_dataset)
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
74

75
76
    else:
        print_rank_0("Separate data paths provided for train, valid & test. Split string will be ignored.")
77

78
79
        train_dataset, valid_dataset, test_dataset = None, None, None
        # Single dataset.
80
81
        if train_data_prefix is not None:
            train_dataset = build_dataset("train", train_data_prefix, data_impl,
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
82
83
                                          train_valid_test_num_samples[0],
                                          seq_length, seed, skip_warmup)
84
85
86

        if valid_data_prefix is not None:
            valid_dataset = build_dataset("valid", valid_data_prefix, data_impl,
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
87
88
                                          train_valid_test_num_samples[1],
                                          seq_length, seed, False)
89
90
91

        if test_data_prefix is not None:
            test_dataset = build_dataset("test", test_data_prefix, data_impl,
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
92
93
                                         train_valid_test_num_samples[2],
                                         seq_length, seed, False)
94
95
96
97

        return (train_dataset, valid_dataset, test_dataset)


Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def _build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
                                     train_valid_test_num_samples,
                                     seq_length, seed, skip_warmup,
                                     return_doc_ids=False):
    """Build train, valid, and test datasets."""

    # Indexed dataset.
    indexed_dataset = get_indexed_dataset_(data_prefix,
                                           data_impl,
                                           skip_warmup)

    total_num_of_documents = indexed_dataset.sizes.shape[0]
    splits = get_train_valid_test_split_(splits_string, total_num_of_documents)

    # Print stats about the splits.
    print_rank_0(' > dataset split:')

    def print_split_stats(name, index):
        print_rank_0('    {}:'.format(name))
        print_rank_0('     document indices in [{}, {}) total of {} '
                     'documents'.format(splits[index], splits[index + 1],
                                        splits[index + 1] - splits[index]))
    print_split_stats('train', 0)
    print_split_stats('validation', 1)
    print_split_stats('test', 2)

    def build_dataset(index, name):
        dataset = None
        if splits[index + 1] > splits[index]:
            documents = np.arange(start=splits[index], stop=splits[index + 1],
                                  step=1, dtype=np.int32)
            dataset = GPTDataset(name, data_prefix,
                                 documents, indexed_dataset,
                                 train_valid_test_num_samples[index],
                                 seq_length, seed,
                                 return_doc_ids)
        return dataset

    train_dataset = build_dataset(0, 'train')
    valid_dataset = build_dataset(1, 'valid')
    test_dataset = build_dataset(2, 'test')

    return (train_dataset, valid_dataset, test_dataset)


def build_dataset(dataset_name, data_prefix, data_impl, num_samples,
                  seq_length, seed, skip_warmup):
145
    dataset = None
mohammad's avatar
mohammad committed
146
    if len(data_prefix) == 1:
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        dataset = _build_dataset(dataset_name,
                        data_prefix[0], data_impl,
                        num_samples, seq_length,
                        seed, skip_warmup)
    else:
        # Blending dataset.
        # Parse the values.
        output = get_datasets_weights_and_num_samples(data_prefix, num_samples)
        prefixes, weights, dataset_num_samples = output

        # Build individual datasets.
        datasets = []
        for i in range(len(prefixes)):
            ds = _build_dataset(dataset_name, prefixes[i],
                            data_impl, dataset_num_samples[i],
                            seq_length, seed, skip_warmup)
            if ds:
                datasets.append(ds)

        if datasets:
            dataset = BlendableDataset(datasets, weights)

    return dataset


def _build_dataset(dataset_name, data_prefix, data_impl,
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
173
                   num_samples, seq_length, seed, skip_warmup):
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    """
    Build dataset. This method is called when individual
    train, valid, test datasets are provided
    """

    # Indexed dataset.
    indexed_dataset = get_indexed_dataset_(data_prefix,
                                           data_impl,
                                           skip_warmup)

    total_num_of_documents = indexed_dataset.sizes.shape[0]

    print_rank_0('    {}:'.format(dataset_name))
    print_rank_0('     document indices in [0, {}) total of {} '
                 'documents'.format(total_num_of_documents, total_num_of_documents))

    documents = np.arange(start=0, stop=total_num_of_documents,
                        step=1, dtype=np.int32)

    dataset = GPTDataset(dataset_name, data_prefix,
                        documents, indexed_dataset,
                        num_samples, seq_length, seed)

    return dataset
mohammad's avatar
mohammad committed
198
199


200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
def get_indexed_dataset_(data_prefix, data_impl, skip_warmup):
    """Build indexed dataset."""
    print_rank_0(' > building dataset index ...')

    start_time = time.time()
    indexed_dataset = make_indexed_dataset(data_prefix,
                                           data_impl,
                                           skip_warmup)
    print_rank_0(' > finished creating indexed dataset in {:4f} '
                 'seconds'.format(time.time() - start_time))
    print_rank_0('    number of documents: {}'.format(
        indexed_dataset.sizes.shape[0]))

    return indexed_dataset


216
class GPTDataset(torch.utils.data.Dataset):
217
218

    def __init__(self, name, data_prefix, documents, indexed_dataset,
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
219
220
                 num_samples, seq_length, seed,
                 return_doc_ids=False):
221
222
223

        self.name = name
        self.indexed_dataset = indexed_dataset
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
224
        self.return_doc_ids = return_doc_ids
225
226
227
228
229
230

        # Checks
        assert np.min(documents) >= 0
        assert np.max(documents) < indexed_dataset.sizes.shape[0]

        # Build index mappings.
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
231
232
233
234
235
        self.doc_idx, self.sample_idx, self.shuffle_idx, self.index_prefix = \
            _build_index_mappings(self.name, data_prefix,
                                  documents, self.indexed_dataset.sizes,
                                  num_samples, seq_length, seed)

236

237
    def __len__(self):
238
239
240
        # -1 is due to data structure used to retieve the index:
        #    sample i --> [sample_idx[i], sample_idx[i+1])
        return self.sample_idx.shape[0] - 1
241

242
    def __getitem__(self, idx):
243
244
245
246
        # Get the shuffled index.
        idx = self.shuffle_idx[idx]
        # Start and end documents and offsets.
        doc_index_f = self.sample_idx[idx][0]
Neel Kant's avatar
Neel Kant committed
247
        doc_index_l = self.sample_idx[idx + 1][0]
248
        offset_f = self.sample_idx[idx][1]
Neel Kant's avatar
Neel Kant committed
249
        offset_l = self.sample_idx[idx + 1][1]
250
        # If we are within the same document, just extract the chunk.
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
251
        doc_ids = []
252
        if doc_index_f == doc_index_l:
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
253
            doc_ids.append(self.doc_idx[doc_index_f])
254
255
256
257
258
            sample = self.indexed_dataset.get(self.doc_idx[doc_index_f],
                                              offset=offset_f,
                                              length=offset_l - offset_f + 1)
        else:
            # Otherwise, get the rest of the initial document.
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
259
            doc_ids.append(self.doc_idx[doc_index_f])
260
261
262
            sample_list = [self.indexed_dataset.get(self.doc_idx[doc_index_f],
                                                    offset=offset_f)]
            # Loop over all in between documents and add the entire document.
Neel Kant's avatar
Neel Kant committed
263
            for i in range(doc_index_f + 1, doc_index_l):
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
264
                doc_ids.append(self.doc_idx[i])
265
266
                sample_list.append(self.indexed_dataset.get(self.doc_idx[i]))
            # And finally add the relevant portion of last document.
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
267
            doc_ids.append(self.doc_idx[doc_index_l])
268
269
            sample_list.append(self.indexed_dataset.get(
                self.doc_idx[doc_index_l],
Neel Kant's avatar
Neel Kant committed
270
                length=offset_l + 1))
271
272
            sample = np.concatenate(sample_list)

Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
273
274
275
276
277
        if self.return_doc_ids: # for retro preprocessing
            return {'text': np.array(sample, dtype=np.int64),
                    'doc_ids': np.array(doc_ids, dtype=np.int64)}
        else:
            return {'text': np.array(sample, dtype=np.int64)}
278
279
280
281


def _build_index_mappings(name, data_prefix, documents, sizes,
                          num_samples, seq_length, seed):
282
283
284
285
286
287
    """Build doc-idx, sample-idx, and shuffle-idx.
    doc-idx: is an array (ordered) of documents to be used in training.
    sample-idx: is the start document index and document offset for each
       training sample.
    shuffle-idx: maps the sample index into a random index into sample-idx.
    """
288
289
290
    # Number of tokens in each epoch and number of required epochs.
    tokens_per_epoch = _num_tokens(documents, sizes)
    num_epochs = _num_epochs(tokens_per_epoch, seq_length, num_samples)
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
291

292
293
294
295
    # rng state
    np_rng = np.random.RandomState(seed=seed)

    # Filename of the index mappings.
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
296
297
298
299
300
    index_prefix = '{}_indexmap'.format(name)
    index_prefix += '_{}ns'.format(num_samples)
    index_prefix += '_{}sl'.format(seq_length)
    index_prefix += '_{}s'.format(seed)
    _filename = data_prefix + '_' + index_prefix
301
302
303
304
305
306
307
308
309
310
311
312
    doc_idx_filename = _filename + '_doc_idx.npy'
    sample_idx_filename = _filename + '_sample_idx.npy'
    shuffle_idx_filename = _filename + '_shuffle_idx.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0:
        if (not os.path.isfile(doc_idx_filename)) or \
           (not os.path.isfile(sample_idx_filename)) or \
           (not os.path.isfile(shuffle_idx_filename)):

            print_rank_0(' > WARNING: could not find index map files, building '
                         'the indices on rank 0 ...')
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

            # For the last epoch, decide whether include the entire epoch
            # in the global shuffle or not.

            # If we need only one epoch, then separating last epoch  does
            # not mean anything.
            if num_epochs == 1:
                separate_last_epoch = False
                print(' > only one epoch required, setting '
                      'separate_last_epoch to False', flush=True)

            else:
                # Get the number of samples for the last epoch
                num_samples_from_epochs_minus_one = (
                    (num_epochs - 1) * tokens_per_epoch - 1) // seq_length
                last_epoch_num_samples = num_samples - \
                                         num_samples_from_epochs_minus_one
                assert last_epoch_num_samples >= 0, \
                    'last epoch number of samples should be non-negative.'
                num_samples_per_epoch = (tokens_per_epoch - 1) // seq_length
                assert last_epoch_num_samples < (num_samples_per_epoch + 1), \
                    'last epoch number of samples exceeded max value.'
                # If we have less than 80% of the samples for the last epoch,
                # seperate out the epoch and treat it differently.
337
338
                # Note: the 80% number is just based on common sense and can
                # be adjusted if needed.
339
340
341
342
343
344
345
346
347
348
349
350
351
                separate_last_epoch = (last_epoch_num_samples <
                                       int(0.80 * num_samples_per_epoch))
                if separate_last_epoch:
                    string = ' > last epoch number of samples ({}) is smaller '\
                             'than 80% of number of samples per epoch ({}), '\
                             'setting separate_last_epoch to True'
                else:
                    string = ' > last epoch number of samples ({}) is larger '\
                             'than 80% of number of samples per epoch ({}), '\
                             'setting separate_last_epoch to False'
                print(string.format(last_epoch_num_samples,
                                    num_samples_per_epoch), flush=True)

352
353
            # doc-idx.
            start_time = time.time()
354
355
            doc_idx = _build_doc_idx(documents, num_epochs, np_rng,
                                     separate_last_epoch)
356
357
358
359
360
361
            np.save(doc_idx_filename, doc_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save doc-idx mapping '
                         '(seconds): {:4f}'.format(time.time() - start_time))
            # sample-idx.
            start_time = time.time()
            # Use C++ implementation for speed.
362
            # First compile and then import.
363
364
365
366
367
368
369
370
371
372
            from megatron.data import helpers
            assert doc_idx.dtype == np.int32
            assert sizes.dtype == np.int32
            sample_idx = helpers.build_sample_idx(sizes, doc_idx, seq_length,
                                                  num_epochs, tokens_per_epoch)
            np.save(sample_idx_filename, sample_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save sample-idx mapping '
                         '(seconds): {:4f}'.format(time.time() - start_time))
            # shuffle-idx.
            start_time = time.time()
373
374
            # -1 is due to data structure used to retieve the index:
            #    sample i --> [sample_idx[i], sample_idx[i+1])
375
376
377
378
379
380
            if separate_last_epoch:
                num_samples_ = num_samples_from_epochs_minus_one
            else:
                num_samples_ = sample_idx.shape[0] - 1
            shuffle_idx = _build_shuffle_idx(num_samples_,
                                             sample_idx.shape[0] - 1, np_rng)
381
382
383
384
385
386
387
388
389
            np.save(shuffle_idx_filename, shuffle_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save shuffle-idx mapping'
                         ' (seconds): {:4f}'.format(time.time() - start_time))

    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
390
    torch.distributed.all_reduce(counts, group=mpu.get_pipeline_model_parallel_group())
391
392
    assert counts[0].item() == (
        torch.distributed.get_world_size() //
393
        torch.distributed.get_world_size(group=mpu.get_tensor_model_parallel_group()))
394
395
396
397
398

    # Load mappings.
    start_time = time.time()
    print_rank_0(' > loading doc-idx mapping from {}'.format(
        doc_idx_filename))
Raul Puri's avatar
Raul Puri committed
399
    doc_idx = np.load(doc_idx_filename, allow_pickle=True, mmap_mode='r')
400
401
    print_rank_0(' > loading sample-idx mapping from {}'.format(
        sample_idx_filename))
Raul Puri's avatar
Raul Puri committed
402
    sample_idx = np.load(sample_idx_filename, allow_pickle=True, mmap_mode='r')
403
404
    print_rank_0(' > loading shuffle-idx mapping from {}'.format(
        shuffle_idx_filename))
Raul Puri's avatar
Raul Puri committed
405
    shuffle_idx = np.load(shuffle_idx_filename, allow_pickle=True, mmap_mode='r')
406
407
408
409
410
411
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('    total number of samples: {}'.format(
        sample_idx.shape[0]))
    print_rank_0('    total number of epochs: {}'.format(num_epochs))

Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
412
    return doc_idx, sample_idx, shuffle_idx, index_prefix
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434


def _num_tokens(documents, sizes):
    """Total number of tokens in the dataset."""
    return np.sum(sizes[documents])


def _num_epochs(tokens_per_epoch, seq_length, num_samples):
    """Based on number of samples and sequence lenght, calculate how many
    epochs will be needed."""
    num_epochs = 0
    total_tokens = 0
    while True:
        num_epochs += 1
        total_tokens += tokens_per_epoch
        # -1 is because we need to retrieve seq_length + 1 token each time
        # but the last token will overlap with the first token of the next
        # sample except for the last sample.
        if ((total_tokens - 1) // seq_length) >= num_samples:
            return num_epochs


435
def _build_doc_idx(documents, num_epochs, np_rng, separate_last_epoch):
436
437
    """Build an array with length = number-of-epochs * number-of-dcuments.
    Each index is mapped to a corresponding document."""
438
439
440
441
442
443
444
445
446
447
448
    if not separate_last_epoch or num_epochs == 1:
        doc_idx = np.mgrid[0:num_epochs, 0:len(documents)][1]
        doc_idx[:] = documents
        doc_idx = doc_idx.reshape(-1)
        doc_idx = doc_idx.astype(np.int32)
        np_rng.shuffle(doc_idx)
        return doc_idx

    doc_idx_first = _build_doc_idx(documents, num_epochs-1, np_rng, False)
    doc_idx_last = _build_doc_idx(documents, 1, np_rng, False)
    return np.concatenate((doc_idx_first, doc_idx_last))
449
450
451
452
453
454


def _build_sample_idx(sizes, doc_idx, seq_length,
                      num_epochs, tokens_per_epoch):
    """Sample index mapping is a 2D array with sizes
    [number-of-samples + 1, 2] where [..., 0] contains
Mohammad's avatar
Mohammad committed
455
    the index into `doc_idx` and [..., 1] is the
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
    starting offset in that document."""

    # Total number of samples. For -1 see comments in `_num_epochs`.
    num_samples = (num_epochs * tokens_per_epoch - 1) // seq_length
    sample_idx = np.zeros([num_samples + 1, 2], dtype=np.int32)

    # Index into sample_idx.
    sample_index = 0
    # Index into doc_idx.
    doc_idx_index = 0
    # Begining offset for each document.
    doc_offset = 0
    # Start with first document and no offset.
    sample_idx[sample_index][0] = doc_idx_index
    sample_idx[sample_index][1] = doc_offset
    sample_index += 1
    while sample_index <= num_samples:
        # Start with a fresh sequence.
        remaining_seq_length = seq_length + 1
        while remaining_seq_length != 0:
            # Get the document length.
            doc_id = doc_idx[doc_idx_index]
            doc_length = sizes[doc_id] - doc_offset
            # And add it to the current sequence.
            remaining_seq_length -= doc_length
            # If we have more than a full sequence, adjust offset and set
            # remaining length to zero so we return from the while loop.
            # Note that -1 here is for the same reason we have -1 in
            # `_num_epochs` calculations.
            if remaining_seq_length <= 0:
                doc_offset += (remaining_seq_length + doc_length - 1)
                remaining_seq_length = 0
            else:
                # Otherwise, start from the begining of the next document.
                doc_idx_index += 1
                doc_offset = 0
        # Record the sequence.
        sample_idx[sample_index][0] = doc_idx_index
        sample_idx[sample_index][1] = doc_offset
        sample_index += 1

    return sample_idx


mshoeybi's avatar
mshoeybi committed
500
def _build_shuffle_idx(num_samples, total_size, np_rng):
501
    """Build the range [0, size) and shuffle."""
502
503
    print(' > building shuffle index with split [0, {}) and [{}, {}) '
          '...'.format(num_samples, num_samples, total_size), flush=True)
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
504

505
    dtype_ = np.uint32
506
    if total_size >= (np.iinfo(np.uint32).max - 1):
507
        dtype_ = np.int64
508
509
510
511
512
513
514
515
516
517
518
519

    shuffle_idx_first = np.arange(start=0, stop=num_samples,
                                  step=1, dtype=dtype_)
    np_rng.shuffle(shuffle_idx_first)
    if num_samples == total_size:
        return shuffle_idx_first

    shuffle_idx_last = np.arange(start=num_samples, stop=total_size,
                                 step=1, dtype=dtype_)
    np_rng.shuffle(shuffle_idx_last)

    return np.concatenate((shuffle_idx_first, shuffle_idx_last))