bind.cpp 17.6 KB
Newer Older
1
#include "src/turbomind/kernels/gemm_s_f16/format.h"
q.yao's avatar
q.yao committed
2
3
#include "src/turbomind/python/dlpack.h"
#include "src/turbomind/triton_backend/llama/LlamaTritonModel.h"
AllentDan's avatar
AllentDan committed
4
#include "src/turbomind/triton_backend/transformer_triton_backend.hpp"
5
#include "src/turbomind/utils/cuda_utils.h"
q.yao's avatar
q.yao committed
6
7
#include "src/turbomind/utils/nccl_utils.h"
#include <cuda_runtime.h>
q.yao's avatar
q.yao committed
8
#include <memory>
q.yao's avatar
q.yao committed
9
#include <pybind11/functional.h>
q.yao's avatar
q.yao committed
10
#include <pybind11/pybind11.h>
11
#include <pybind11/pytypes.h>
q.yao's avatar
q.yao committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include <pybind11/stl.h>
#include <pybind11/stl_bind.h>

namespace py = pybind11;
namespace ft = turbomind;
using namespace pybind11::literals;

// prepare to bind container
using TensorVector = std::vector<triton::Tensor>;
PYBIND11_MAKE_OPAQUE(TensorVector);
using TensorMap = std::unordered_map<std::string, triton::Tensor>;
PYBIND11_MAKE_OPAQUE(TensorMap);
static const char kDlTensorCapsuleName[] = "dltensor";

template<typename T>
std::shared_ptr<T> make_shared_nodel(T data)
{
    return std::shared_ptr<T>(&data, [](T*) {});
}

DLDevice getDLDevice(triton::Tensor& tensor)
{
q.yao's avatar
q.yao committed
34
35
36
37
38
39
40
    int device_id = 0;
    if (tensor.where == triton::MEMORY_GPU) {
        cudaPointerAttributes ptr_attr;
        cudaPointerGetAttributes(&ptr_attr, tensor.data);
        device_id = ptr_attr.device;
    }

Chen Xin's avatar
Chen Xin committed
41
    DLDevice device{kDLCPU, device_id};
q.yao's avatar
q.yao committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

    switch (tensor.where) {
        case triton::MEMORY_CPU:
            device.device_type = DLDeviceType::kDLCPU;
            break;
        case triton::MEMORY_CPU_PINNED:
            device.device_type = DLDeviceType::kDLCUDAHost;
        case triton::MEMORY_GPU:
            device.device_type = DLDeviceType::kDLCUDA;
            break;
        default:
            break;
    }

    return device;
}

std::unique_ptr<DLManagedTensor> TritonTensorToDLManagedTensor(triton::Tensor& tensor)
{
    DLDevice device = getDLDevice(tensor);

Chen Xin's avatar
Chen Xin committed
63
    DLDataType data_type{0, 0, 1};
q.yao's avatar
q.yao committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    switch (tensor.type) {
        case triton::TYPE_BOOL:
            data_type.code = DLDataTypeCode::kDLBool;
            data_type.bits = 8;
            break;
        case triton::TYPE_UINT8:
            data_type.code = DLDataTypeCode::kDLUInt;
            data_type.bits = 8;
            break;
        case triton::TYPE_UINT16:
            data_type.code = DLDataTypeCode::kDLUInt;
            data_type.bits = 16;
            break;
        case triton::TYPE_UINT32:
            data_type.code = DLDataTypeCode::kDLUInt;
            data_type.bits = 32;
            break;
        case triton::TYPE_UINT64:
            data_type.code = DLDataTypeCode::kDLUInt;
            data_type.bits = 64;
            break;
        case triton::TYPE_INT8:
        case triton::TYPE_BYTES:
            data_type.code = DLDataTypeCode::kDLInt;
            data_type.bits = 8;
            break;
        case triton::TYPE_INT16:
            data_type.code = DLDataTypeCode::kDLInt;
            data_type.bits = 16;
            break;
        case triton::TYPE_INT32:
            data_type.code = DLDataTypeCode::kDLInt;
            data_type.bits = 32;
            break;
        case triton::TYPE_INT64:
            data_type.code = DLDataTypeCode::kDLInt;
            data_type.bits = 64;
            break;
        case triton::TYPE_FP16:
            data_type.code = DLDataTypeCode::kDLFloat;
            data_type.bits = 16;
            break;
        case triton::TYPE_FP32:
            data_type.code = DLDataTypeCode::kDLFloat;
            data_type.bits = 32;
            break;
        case triton::TYPE_FP64:
            data_type.code = DLDataTypeCode::kDLFloat;
            data_type.bits = 64;
            break;
        case triton::TYPE_BF16:
            data_type.code = DLDataTypeCode::kDLBfloat;
            data_type.bits = 16;
            break;
        default:
            break;
    }
Chen Xin's avatar
Chen Xin committed
121
122
123
124
125
126
127
    DLTensor dl_tensor{const_cast<void*>(tensor.data),
                       device,
                       (int32_t)(tensor.shape.size()),
                       data_type,
                       reinterpret_cast<int64_t*>(const_cast<size_t*>(tensor.shape.data())),
                       (int64_t*)(nullptr),
                       0};
q.yao's avatar
q.yao committed
128

Chen Xin's avatar
Chen Xin committed
129
    return std::unique_ptr<DLManagedTensor>(new DLManagedTensor{dl_tensor, nullptr, [](DLManagedTensor*) {}});
q.yao's avatar
q.yao committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
}

triton::MemoryType getMemoryType(DLDevice device)
{
    switch (device.device_type) {
        case DLDeviceType::kDLCPU:
            return triton::MemoryType::MEMORY_CPU;
        case DLDeviceType::kDLCUDAHost:
            return triton::MemoryType::MEMORY_CPU_PINNED;
        case DLDeviceType::kDLCUDA:
            return triton::MemoryType::MEMORY_GPU;
        default:
            return triton::MemoryType::MEMORY_CPU;
    }
}

triton::DataType getDataType(DLDataType data_type)
{
    switch (data_type.code) {
        case DLDataTypeCode::kDLUInt:
            switch (data_type.bits) {
                case 8:
                    return triton::TYPE_UINT8;
                case 16:
                    return triton::TYPE_UINT16;
                case 32:
                    return triton::TYPE_UINT32;
                case 64:
                    return triton::TYPE_UINT64;
                default:
                    return triton::TYPE_INVALID;
            }
            break;
        case DLDataTypeCode::kDLInt:
            switch (data_type.bits) {
                case 8:
                    return triton::TYPE_INT8;
                case 16:
                    return triton::TYPE_INT16;
                case 32:
                    return triton::TYPE_INT32;
                case 64:
                    return triton::TYPE_INT64;
                default:
                    return triton::TYPE_INVALID;
            }
            break;
        case DLDataTypeCode::kDLFloat:
            switch (data_type.bits) {
                case 16:
                    return triton::TYPE_FP16;
                case 32:
                    return triton::TYPE_FP32;
                case 64:
                    return triton::TYPE_FP64;
                default:
                    return triton::TYPE_INVALID;
            }
            break;
        case DLDataTypeCode::kDLBfloat:
            switch (data_type.bits) {
                case 16:
                    return triton::TYPE_BF16;
                default:
                    return triton::TYPE_INVALID;
            }
            break;
        case DLDataTypeCode::kDLBool:
            return triton::TYPE_BOOL;
        default:
            return triton::TYPE_INVALID;
    }
}

std::shared_ptr<triton::Tensor> DLManagedTensorToTritonTensor(DLManagedTensor* tensor)
{
    auto& dl_tensor = tensor->dl_tensor;
    auto  where     = getMemoryType(dl_tensor.device);
    auto  dtype     = getDataType(dl_tensor.dtype);
    assert(dl_tensor.ndim > 0);
    std::vector<size_t> shape(dl_tensor.shape, dl_tensor.shape + dl_tensor.ndim);
    auto                data = dl_tensor.data;

    return std::make_shared<triton::Tensor>(where, dtype, shape, data);
}

216
217
218
219
220
221
222
DLTensor GetDLTensor(py::object obj)
{
    py::capsule      cap  = obj.attr("__dlpack__")();
    DLManagedTensor* dlmt = static_cast<DLManagedTensor*>(PyCapsule_GetPointer(cap.ptr(), kDlTensorCapsuleName));
    return dlmt->dl_tensor;
}

q.yao's avatar
q.yao committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
PYBIND11_MODULE(_turbomind, m)
{
    // nccl param
    py::class_<ft::NcclParam>(m, "NcclParam")
        .def(py::init<int, int>(), "rank"_a = 0, "world_size"_a = 1)
        .def("__str__", &ft::NcclParam::toString);

    // custom comm
    py::class_<ft::AbstractCustomComm, std::shared_ptr<ft::AbstractCustomComm>>(m, "AbstractCustomComm");

    // instance comm
    py::class_<ft::AbstractInstanceComm>(m, "AbstractInstanceComm");

    // data type
    py::enum_<triton::DataType>(m, "DataType")
        .value("TYPE_INVALID", triton::DataType::TYPE_INVALID)
        .value("TYPE_BOOL", triton::DataType::TYPE_BOOL)
        .value("TYPE_UINT8", triton::DataType::TYPE_UINT8)
        .value("TYPE_UINT16", triton::DataType::TYPE_UINT16)
        .value("TYPE_UINT32", triton::DataType::TYPE_UINT32)
        .value("TYPE_UINT64", triton::DataType::TYPE_UINT64)
        .value("TYPE_INT8", triton::DataType::TYPE_INT8)
        .value("TYPE_INT16", triton::DataType::TYPE_INT16)
        .value("TYPE_INT32", triton::DataType::TYPE_INT32)
        .value("TYPE_INT64", triton::DataType::TYPE_INT64)
        .value("TYPE_FP16", triton::DataType::TYPE_FP16)
        .value("TYPE_FP32", triton::DataType::TYPE_FP32)
        .value("TYPE_FP64", triton::DataType::TYPE_FP64)
        .value("TYPE_BYTES", triton::DataType::TYPE_BYTES)
        .value("TYPE_BF16", triton::DataType::TYPE_BF16);

    // memory type
    py::enum_<triton::MemoryType>(m, "MemoryType")
        .value("MEMORY_CPU", triton::MemoryType::MEMORY_CPU)
        .value("MEMORY_CPU_PINNED", triton::MemoryType::MEMORY_CPU_PINNED)
        .value("MEMORY_GPU", triton::MemoryType::MEMORY_GPU);

    // tensor
    py::class_<triton::Tensor, std::shared_ptr<triton::Tensor>>(m, "Tensor")
        .def_readonly("where", &triton::Tensor::where)
        .def_readonly("type", &triton::Tensor::type)
        .def_readonly("shape", &triton::Tensor::shape)
        .def_readonly("data", &triton::Tensor::data)
        .def(py::init([](const triton::MemoryType   where,
                         const triton::DataType     type,
                         const std::vector<size_t>& shape,
                         const long                 data) {
            auto data_ptr = reinterpret_cast<void*>(data);
            return new triton::Tensor(where, type, shape, data_ptr);
        }))
        .def(
            "view",
            [](triton::Tensor* self, triton::DataType new_type) {
                return new triton::Tensor(self->where, new_type, self->shape, self->data);
            },
            "new_type"_a)
        .def(
            "view",
            [](triton::Tensor* self, std::vector<size_t> new_shape) {
                return new triton::Tensor(self->where, self->type, new_shape, self->data);
            },
            "new_shape"_a)
        .def(
            "__dlpack__",
            [](triton::Tensor* self, long stream) {
                auto tensor_ptr = TritonTensorToDLManagedTensor(*self);
                return new py::capsule(tensor_ptr.release(), kDlTensorCapsuleName, [](PyObject* obj) {
                    DLManagedTensor* dlmt =
                        static_cast<DLManagedTensor*>(PyCapsule_GetPointer(obj, kDlTensorCapsuleName));
                    if (dlmt) {
                        dlmt->deleter(dlmt);
                    }
                    else {
                        // The tensor has been deleted. Clear any error from
                        // PyCapsule_GetPointer.
                        PyErr_Clear();
                    }
                });
            },
            "stream"_a = 0)
        .def("__dlpack_device__", [](triton::Tensor* self) {
            auto device = getDLDevice(*self);
            return std::tuple<int, int>(int(device.device_type), device.device_id);
        });
    m.def(
        "from_dlpack",
        [](py::object obj) {
            py::capsule      cap = obj.attr("__dlpack__")();
            DLManagedTensor* dlmt =
                static_cast<DLManagedTensor*>(PyCapsule_GetPointer(cap.ptr(), kDlTensorCapsuleName));
            auto ret = DLManagedTensorToTritonTensor(dlmt);
            return ret;
        },
        "dl_managed_tensor"_a);

    // transformer model instance
    py::bind_map<TensorMap, std::shared_ptr<TensorMap>>(m, "TensorMap");
    py::class_<AbstractTransformerModelInstance>(m, "AbstractTransformerModelInstance")
        .def(
            "forward",
AllentDan's avatar
AllentDan committed
323
324
325
326
            [](AbstractTransformerModelInstance* model,
               std::shared_ptr<TensorMap>        input_tensors,
               ft::AbstractInstanceComm*         inst_comm) { return model->forward(input_tensors, inst_comm); },
            py::call_guard<py::gil_scoped_release>(),
q.yao's avatar
q.yao committed
327
            "input_tensors"_a,
q.yao's avatar
q.yao committed
328
329
330
331
332
333
334
335
336
            "inst_comm"_a = nullptr)
        .def(
            "register_callback",
            [](AbstractTransformerModelInstance* self, triton_stream_cb_t cb, py::object ctx) {
                self->registerCallback(cb, ctx.ptr());
            },
            "callback"_a,
            "context"_a = nullptr)
        .def("unregister_callback", &AbstractTransformerModelInstance::unRegisterCallback);
q.yao's avatar
q.yao committed
337
338
339

    // transformer model
    py::class_<AbstractTransformerModel, std::shared_ptr<AbstractTransformerModel>>(m, "AbstractTransformerModel")
AllentDan's avatar
AllentDan committed
340
341
342
343
344
345
346
        .def_static(
            "create_llama_model",
            [](std::string model_dir,
               size_t      tensor_para_size,
               size_t      pipeline_para_size,
               int         enable_custom_all_reduce,
               std::string data_type) -> std::shared_ptr<AbstractTransformerModel> {
347
                if (data_type == "half" || data_type == "fp16" || data_type == "int4") {
AllentDan's avatar
AllentDan committed
348
349
350
351
352
353
354
355
356
357
358
359
360
                    return std::make_shared<LlamaTritonModel<half>>(
                        tensor_para_size, pipeline_para_size, enable_custom_all_reduce, model_dir);
                }
                else {
                    return std::make_shared<LlamaTritonModel<float>>(
                        tensor_para_size, pipeline_para_size, enable_custom_all_reduce, model_dir);
                }
            },
            "model_dir"_a,
            "tensor_para_size"_a         = 1,
            "pipeline_para_size"_a       = 1,
            "enable_custom_all_reduce"_a = 0,
            "data_type"_a                = "half")
q.yao's avatar
q.yao committed
361
362
363
364
365
366
367
        .def("create_nccl_params",
             &AbstractTransformerModel::createNcclParams,
             "node_id"_a,
             "device_id_start"_a = 0,
             "multi_node"_a      = false)
        .def(
            "create_custom_comms",
q.yao's avatar
q.yao committed
368
            [](AbstractTransformerModel* model, int world_size) {
q.yao's avatar
q.yao committed
369
370
371
372
373
374
375
376
                std::vector<std::shared_ptr<ft::AbstractCustomComm>> ret;
                model->createCustomComms(&ret, world_size);
                return ret;
            },
            "world_size"_a)
        .def("create_instance_comm", &AbstractTransformerModel::createInstanceComm, "size"_a)
        .def(
            "create_model_instance",
q.yao's avatar
q.yao committed
377
            [](AbstractTransformerModel*                                         model,
q.yao's avatar
q.yao committed
378
379
380
381
382
383
384
385
               int                                                               deviceId,
               int                                                               rank,
               long                                                              stream_id,
               std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>> nccl_params,
               std::shared_ptr<ft::AbstractCustomComm>                           custom_all_reduce_comm = nullptr) {
                cudaStream_t stream = reinterpret_cast<cudaStream_t>(stream_id);
                return model->createModelInstance(deviceId, rank, stream, nccl_params, custom_all_reduce_comm);
            },
q.yao's avatar
q.yao committed
386
            py::call_guard<py::gil_scoped_release>(),
q.yao's avatar
q.yao committed
387
388
389
390
391
            "device_id"_a,
            "rank"_a,
            "stream"_a,
            "nccl_params"_a,
            "custom_all_reduce_comm"_a = nullptr)
q.yao's avatar
q.yao committed
392
393
394
395
396
        .def("create_shared_weights",
             &AbstractTransformerModel::createSharedWeights,
             py::call_guard<py::gil_scoped_release>(),
             "device_id"_a,
             "rank"_a)
q.yao's avatar
q.yao committed
397
398
399
400
        .def("__str__", &AbstractTransformerModel::toString)
        .def("__repr__", &AbstractTransformerModel::toString)
        .def("get_tensor_para_size", &AbstractTransformerModel::getTensorParaSize)
        .def("get_pipeline_para_size", &AbstractTransformerModel::getPipelineParaSize);
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

    m.def("transpose_qk_s4_k_m8", [](py::object src, py::object dst, int m, int k, int size_per_head) {
        auto src_tensor = GetDLTensor(src);
        auto dst_tensor = GetDLTensor(dst);

        turbomind::transpose_qk_s4_k_m8_hf(
            (uint32_t*)dst_tensor.data, (const uint32_t*)src_tensor.data, m, k, size_per_head, nullptr);
    });

    m.def("fuse_w1_w3_s4_k_m8", [](py::object src, py::object dst, int m, int k) {
        auto src_tensor = GetDLTensor(src);
        auto dst_tensor = GetDLTensor(dst);

        turbomind::fuse_w1_w3_s4_k_m8((uint32_t*)dst_tensor.data, (const uint32_t*)src_tensor.data, m, k, nullptr);
    });

    m.def("convert_s4_k_m8",
          [](py::object A_dst,
             py::object Q_dst,
             py::object ws,
             py::object A_src,
             py::object scales,
             py::object qzeros,
             int        m,
             int        k,
             int        group_size) {
              auto a_dst = GetDLTensor(A_dst);
              auto q_dst = GetDLTensor(Q_dst);
              auto w     = GetDLTensor(ws);
              auto a_src = GetDLTensor(A_src);
              auto s     = GetDLTensor(scales);
              auto qz    = GetDLTensor(qzeros);

              turbomind::convert_s4_k_m8((uint32_t*)a_dst.data,
                                         (half2*)q_dst.data,
                                         (half*)w.data,
                                         (const uint32_t*)a_src.data,
                                         (const half*)s.data,
                                         (const uint32_t*)qz.data,
                                         m,
                                         k,
                                         group_size,
                                         nullptr);
          });

    m.def("dequantize_s4", [](py::object src, py::object dst) {
        auto src_tensor = GetDLTensor(src);
        auto dst_tensor = GetDLTensor(dst);
        auto src_count  = std::accumulate(src_tensor.shape, src_tensor.shape + src_tensor.ndim, size_t{1});
        auto dst_count  = std::accumulate(dst_tensor.shape, dst_tensor.shape + dst_tensor.ndim, size_t{1});
        turbomind::FT_CHECK(src_count * 8 == dst_count);
        turbomind::dequantize_s4((uint4*)dst_tensor.data, (uint32_t*)src_tensor.data, src_count, nullptr);
    });
454
}