bind.cpp 15.1 KB
Newer Older
q.yao's avatar
q.yao committed
1
2
#include "src/turbomind/python/dlpack.h"
#include "src/turbomind/triton_backend/llama/LlamaTritonModel.h"
AllentDan's avatar
AllentDan committed
3
#include "src/turbomind/triton_backend/transformer_triton_backend.hpp"
q.yao's avatar
q.yao committed
4
5
#include "src/turbomind/utils/nccl_utils.h"
#include <cuda_runtime.h>
q.yao's avatar
q.yao committed
6
#include <memory>
q.yao's avatar
q.yao committed
7
#include <pybind11/functional.h>
q.yao's avatar
q.yao committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/stl_bind.h>

namespace py = pybind11;
namespace ft = turbomind;
using namespace pybind11::literals;

// prepare to bind container
using TensorVector = std::vector<triton::Tensor>;
PYBIND11_MAKE_OPAQUE(TensorVector);
using TensorMap = std::unordered_map<std::string, triton::Tensor>;
PYBIND11_MAKE_OPAQUE(TensorMap);
static const char kDlTensorCapsuleName[] = "dltensor";

template<typename T>
std::shared_ptr<T> make_shared_nodel(T data)
{
    return std::shared_ptr<T>(&data, [](T*) {});
}

DLDevice getDLDevice(triton::Tensor& tensor)
{
q.yao's avatar
q.yao committed
31
32
33
34
35
36
37
38
    int device_id = 0;
    if (tensor.where == triton::MEMORY_GPU) {
        cudaPointerAttributes ptr_attr;
        cudaPointerGetAttributes(&ptr_attr, tensor.data);
        device_id = ptr_attr.device;
    }

    DLDevice device{.device_id = device_id};
q.yao's avatar
q.yao committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

    switch (tensor.where) {
        case triton::MEMORY_CPU:
            device.device_type = DLDeviceType::kDLCPU;
            break;
        case triton::MEMORY_CPU_PINNED:
            device.device_type = DLDeviceType::kDLCUDAHost;
        case triton::MEMORY_GPU:
            device.device_type = DLDeviceType::kDLCUDA;
            break;
        default:
            break;
    }

    return device;
}

std::unique_ptr<DLManagedTensor> TritonTensorToDLManagedTensor(triton::Tensor& tensor)
{
    DLDevice device = getDLDevice(tensor);

    DLDataType data_type{.lanes = 1};
    switch (tensor.type) {
        case triton::TYPE_BOOL:
            data_type.code = DLDataTypeCode::kDLBool;
            data_type.bits = 8;
            break;
        case triton::TYPE_UINT8:
            data_type.code = DLDataTypeCode::kDLUInt;
            data_type.bits = 8;
            break;
        case triton::TYPE_UINT16:
            data_type.code = DLDataTypeCode::kDLUInt;
            data_type.bits = 16;
            break;
        case triton::TYPE_UINT32:
            data_type.code = DLDataTypeCode::kDLUInt;
            data_type.bits = 32;
            break;
        case triton::TYPE_UINT64:
            data_type.code = DLDataTypeCode::kDLUInt;
            data_type.bits = 64;
            break;
        case triton::TYPE_INT8:
        case triton::TYPE_BYTES:
            data_type.code = DLDataTypeCode::kDLInt;
            data_type.bits = 8;
            break;
        case triton::TYPE_INT16:
            data_type.code = DLDataTypeCode::kDLInt;
            data_type.bits = 16;
            break;
        case triton::TYPE_INT32:
            data_type.code = DLDataTypeCode::kDLInt;
            data_type.bits = 32;
            break;
        case triton::TYPE_INT64:
            data_type.code = DLDataTypeCode::kDLInt;
            data_type.bits = 64;
            break;
        case triton::TYPE_FP16:
            data_type.code = DLDataTypeCode::kDLFloat;
            data_type.bits = 16;
            break;
        case triton::TYPE_FP32:
            data_type.code = DLDataTypeCode::kDLFloat;
            data_type.bits = 32;
            break;
        case triton::TYPE_FP64:
            data_type.code = DLDataTypeCode::kDLFloat;
            data_type.bits = 64;
            break;
        case triton::TYPE_BF16:
            data_type.code = DLDataTypeCode::kDLBfloat;
            data_type.bits = 16;
            break;
        default:
            break;
    }
    DLTensor dl_tensor{.data        = const_cast<void*>(tensor.data),
                       .device      = device,
                       .ndim        = (int32_t)(tensor.shape.size()),
                       .dtype       = data_type,
                       .shape       = reinterpret_cast<int64_t*>(const_cast<size_t*>(tensor.shape.data())),
                       .strides     = (int64_t*)(nullptr),
                       .byte_offset = 0};

    return std::unique_ptr<DLManagedTensor>(
        new DLManagedTensor{.dl_tensor = dl_tensor, .manager_ctx = nullptr, .deleter = [](DLManagedTensor*) {}});
}

triton::MemoryType getMemoryType(DLDevice device)
{
    switch (device.device_type) {
        case DLDeviceType::kDLCPU:
            return triton::MemoryType::MEMORY_CPU;
        case DLDeviceType::kDLCUDAHost:
            return triton::MemoryType::MEMORY_CPU_PINNED;
        case DLDeviceType::kDLCUDA:
            return triton::MemoryType::MEMORY_GPU;
        default:
            return triton::MemoryType::MEMORY_CPU;
    }
}

triton::DataType getDataType(DLDataType data_type)
{
    switch (data_type.code) {
        case DLDataTypeCode::kDLUInt:
            switch (data_type.bits) {
                case 8:
                    return triton::TYPE_UINT8;
                case 16:
                    return triton::TYPE_UINT16;
                case 32:
                    return triton::TYPE_UINT32;
                case 64:
                    return triton::TYPE_UINT64;
                default:
                    return triton::TYPE_INVALID;
            }
            break;
        case DLDataTypeCode::kDLInt:
            switch (data_type.bits) {
                case 8:
                    return triton::TYPE_INT8;
                case 16:
                    return triton::TYPE_INT16;
                case 32:
                    return triton::TYPE_INT32;
                case 64:
                    return triton::TYPE_INT64;
                default:
                    return triton::TYPE_INVALID;
            }
            break;
        case DLDataTypeCode::kDLFloat:
            switch (data_type.bits) {
                case 16:
                    return triton::TYPE_FP16;
                case 32:
                    return triton::TYPE_FP32;
                case 64:
                    return triton::TYPE_FP64;
                default:
                    return triton::TYPE_INVALID;
            }
            break;
        case DLDataTypeCode::kDLBfloat:
            switch (data_type.bits) {
                case 16:
                    return triton::TYPE_BF16;
                default:
                    return triton::TYPE_INVALID;
            }
            break;
        case DLDataTypeCode::kDLBool:
            return triton::TYPE_BOOL;
        default:
            return triton::TYPE_INVALID;
    }
}

std::shared_ptr<triton::Tensor> DLManagedTensorToTritonTensor(DLManagedTensor* tensor)
{
    auto& dl_tensor = tensor->dl_tensor;
    auto  where     = getMemoryType(dl_tensor.device);
    auto  dtype     = getDataType(dl_tensor.dtype);
    assert(dl_tensor.ndim > 0);
    std::vector<size_t> shape(dl_tensor.shape, dl_tensor.shape + dl_tensor.ndim);
    auto                data = dl_tensor.data;

    return std::make_shared<triton::Tensor>(where, dtype, shape, data);
}

PYBIND11_MODULE(_turbomind, m)
{
    // nccl param
    py::class_<ft::NcclParam>(m, "NcclParam")
        .def(py::init<int, int>(), "rank"_a = 0, "world_size"_a = 1)
        .def("__str__", &ft::NcclParam::toString);

    // custom comm
    py::class_<ft::AbstractCustomComm, std::shared_ptr<ft::AbstractCustomComm>>(m, "AbstractCustomComm");

    // instance comm
    py::class_<ft::AbstractInstanceComm>(m, "AbstractInstanceComm");

    // data type
    py::enum_<triton::DataType>(m, "DataType")
        .value("TYPE_INVALID", triton::DataType::TYPE_INVALID)
        .value("TYPE_BOOL", triton::DataType::TYPE_BOOL)
        .value("TYPE_UINT8", triton::DataType::TYPE_UINT8)
        .value("TYPE_UINT16", triton::DataType::TYPE_UINT16)
        .value("TYPE_UINT32", triton::DataType::TYPE_UINT32)
        .value("TYPE_UINT64", triton::DataType::TYPE_UINT64)
        .value("TYPE_INT8", triton::DataType::TYPE_INT8)
        .value("TYPE_INT16", triton::DataType::TYPE_INT16)
        .value("TYPE_INT32", triton::DataType::TYPE_INT32)
        .value("TYPE_INT64", triton::DataType::TYPE_INT64)
        .value("TYPE_FP16", triton::DataType::TYPE_FP16)
        .value("TYPE_FP32", triton::DataType::TYPE_FP32)
        .value("TYPE_FP64", triton::DataType::TYPE_FP64)
        .value("TYPE_BYTES", triton::DataType::TYPE_BYTES)
        .value("TYPE_BF16", triton::DataType::TYPE_BF16);

    // memory type
    py::enum_<triton::MemoryType>(m, "MemoryType")
        .value("MEMORY_CPU", triton::MemoryType::MEMORY_CPU)
        .value("MEMORY_CPU_PINNED", triton::MemoryType::MEMORY_CPU_PINNED)
        .value("MEMORY_GPU", triton::MemoryType::MEMORY_GPU);

    // tensor
    py::class_<triton::Tensor, std::shared_ptr<triton::Tensor>>(m, "Tensor")
        .def_readonly("where", &triton::Tensor::where)
        .def_readonly("type", &triton::Tensor::type)
        .def_readonly("shape", &triton::Tensor::shape)
        .def_readonly("data", &triton::Tensor::data)
        .def(py::init([](const triton::MemoryType   where,
                         const triton::DataType     type,
                         const std::vector<size_t>& shape,
                         const long                 data) {
            auto data_ptr = reinterpret_cast<void*>(data);
            return new triton::Tensor(where, type, shape, data_ptr);
        }))
        .def(
            "view",
            [](triton::Tensor* self, triton::DataType new_type) {
                return new triton::Tensor(self->where, new_type, self->shape, self->data);
            },
            "new_type"_a)
        .def(
            "view",
            [](triton::Tensor* self, std::vector<size_t> new_shape) {
                return new triton::Tensor(self->where, self->type, new_shape, self->data);
            },
            "new_shape"_a)
        .def(
            "__dlpack__",
            [](triton::Tensor* self, long stream) {
                auto tensor_ptr = TritonTensorToDLManagedTensor(*self);
                return new py::capsule(tensor_ptr.release(), kDlTensorCapsuleName, [](PyObject* obj) {
                    DLManagedTensor* dlmt =
                        static_cast<DLManagedTensor*>(PyCapsule_GetPointer(obj, kDlTensorCapsuleName));
                    if (dlmt) {
                        dlmt->deleter(dlmt);
                    }
                    else {
                        // The tensor has been deleted. Clear any error from
                        // PyCapsule_GetPointer.
                        PyErr_Clear();
                    }
                });
            },
            "stream"_a = 0)
        .def("__dlpack_device__", [](triton::Tensor* self) {
            auto device = getDLDevice(*self);
            return std::tuple<int, int>(int(device.device_type), device.device_id);
        });
    m.def(
        "from_dlpack",
        [](py::object obj) {
            py::capsule      cap = obj.attr("__dlpack__")();
            DLManagedTensor* dlmt =
                static_cast<DLManagedTensor*>(PyCapsule_GetPointer(cap.ptr(), kDlTensorCapsuleName));
            auto ret = DLManagedTensorToTritonTensor(dlmt);
            return ret;
        },
        "dl_managed_tensor"_a);

    // transformer model instance
    py::bind_map<TensorMap, std::shared_ptr<TensorMap>>(m, "TensorMap");
    py::class_<AbstractTransformerModelInstance>(m, "AbstractTransformerModelInstance")
        .def(
            "forward",
AllentDan's avatar
AllentDan committed
314
315
316
317
            [](AbstractTransformerModelInstance* model,
               std::shared_ptr<TensorMap>        input_tensors,
               ft::AbstractInstanceComm*         inst_comm) { return model->forward(input_tensors, inst_comm); },
            py::call_guard<py::gil_scoped_release>(),
q.yao's avatar
q.yao committed
318
            "input_tensors"_a,
q.yao's avatar
q.yao committed
319
320
321
322
323
324
325
326
327
            "inst_comm"_a = nullptr)
        .def(
            "register_callback",
            [](AbstractTransformerModelInstance* self, triton_stream_cb_t cb, py::object ctx) {
                self->registerCallback(cb, ctx.ptr());
            },
            "callback"_a,
            "context"_a = nullptr)
        .def("unregister_callback", &AbstractTransformerModelInstance::unRegisterCallback);
q.yao's avatar
q.yao committed
328
329
330

    // transformer model
    py::class_<AbstractTransformerModel, std::shared_ptr<AbstractTransformerModel>>(m, "AbstractTransformerModel")
AllentDan's avatar
AllentDan committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        .def_static(
            "create_llama_model",
            [](std::string model_dir,
               size_t      tensor_para_size,
               size_t      pipeline_para_size,
               int         enable_custom_all_reduce,
               std::string data_type) -> std::shared_ptr<AbstractTransformerModel> {
                if (data_type == "half" || data_type == "fp16") {
                    return std::make_shared<LlamaTritonModel<half>>(
                        tensor_para_size, pipeline_para_size, enable_custom_all_reduce, model_dir);
                }
                else {
                    return std::make_shared<LlamaTritonModel<float>>(
                        tensor_para_size, pipeline_para_size, enable_custom_all_reduce, model_dir);
                }
            },
            "model_dir"_a,
            "tensor_para_size"_a         = 1,
            "pipeline_para_size"_a       = 1,
            "enable_custom_all_reduce"_a = 0,
            "data_type"_a                = "half")
q.yao's avatar
q.yao committed
352
353
354
355
356
357
358
        .def("create_nccl_params",
             &AbstractTransformerModel::createNcclParams,
             "node_id"_a,
             "device_id_start"_a = 0,
             "multi_node"_a      = false)
        .def(
            "create_custom_comms",
q.yao's avatar
q.yao committed
359
            [](AbstractTransformerModel* model, int world_size) {
q.yao's avatar
q.yao committed
360
361
362
363
364
365
366
367
                std::vector<std::shared_ptr<ft::AbstractCustomComm>> ret;
                model->createCustomComms(&ret, world_size);
                return ret;
            },
            "world_size"_a)
        .def("create_instance_comm", &AbstractTransformerModel::createInstanceComm, "size"_a)
        .def(
            "create_model_instance",
q.yao's avatar
q.yao committed
368
            [](AbstractTransformerModel*                                         model,
q.yao's avatar
q.yao committed
369
370
371
372
373
374
375
376
               int                                                               deviceId,
               int                                                               rank,
               long                                                              stream_id,
               std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>> nccl_params,
               std::shared_ptr<ft::AbstractCustomComm>                           custom_all_reduce_comm = nullptr) {
                cudaStream_t stream = reinterpret_cast<cudaStream_t>(stream_id);
                return model->createModelInstance(deviceId, rank, stream, nccl_params, custom_all_reduce_comm);
            },
q.yao's avatar
q.yao committed
377
            py::call_guard<py::gil_scoped_release>(),
q.yao's avatar
q.yao committed
378
379
380
381
382
            "device_id"_a,
            "rank"_a,
            "stream"_a,
            "nccl_params"_a,
            "custom_all_reduce_comm"_a = nullptr)
q.yao's avatar
q.yao committed
383
384
385
386
387
        .def("create_shared_weights",
             &AbstractTransformerModel::createSharedWeights,
             py::call_guard<py::gil_scoped_release>(),
             "device_id"_a,
             "rank"_a)
q.yao's avatar
q.yao committed
388
389
390
391
        .def("__str__", &AbstractTransformerModel::toString)
        .def("__repr__", &AbstractTransformerModel::toString)
        .def("get_tensor_para_size", &AbstractTransformerModel::getTensorParaSize)
        .def("get_pipeline_para_size", &AbstractTransformerModel::getPipelineParaSize);
392
}