bind.cpp 20.1 KB
Newer Older
1
#include "src/turbomind/kernels/gemm_s_f16/format.h"
q.yao's avatar
q.yao committed
2
3
#include "src/turbomind/python/dlpack.h"
#include "src/turbomind/triton_backend/llama/LlamaTritonModel.h"
AllentDan's avatar
AllentDan committed
4
#include "src/turbomind/triton_backend/transformer_triton_backend.hpp"
5
#include "src/turbomind/utils/cuda_utils.h"
q.yao's avatar
q.yao committed
6
7
#include "src/turbomind/utils/nccl_utils.h"
#include <cuda_runtime.h>
q.yao's avatar
q.yao committed
8
#include <memory>
q.yao's avatar
q.yao committed
9
#include <pybind11/functional.h>
q.yao's avatar
q.yao committed
10
#include <pybind11/pybind11.h>
11
#include <pybind11/pytypes.h>
q.yao's avatar
q.yao committed
12
13
#include <pybind11/stl.h>
#include <pybind11/stl_bind.h>
q.yao's avatar
q.yao committed
14
#include <stdexcept>
q.yao's avatar
q.yao committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28

namespace py = pybind11;
namespace ft = turbomind;
using namespace pybind11::literals;

// prepare to bind container
using TensorVector = std::vector<triton::Tensor>;
PYBIND11_MAKE_OPAQUE(TensorVector);
using TensorMap = std::unordered_map<std::string, triton::Tensor>;
PYBIND11_MAKE_OPAQUE(TensorMap);
static const char kDlTensorCapsuleName[] = "dltensor";

DLDevice getDLDevice(triton::Tensor& tensor)
{
q.yao's avatar
q.yao committed
29
30
31
32
33
34
35
    int device_id = 0;
    if (tensor.where == triton::MEMORY_GPU) {
        cudaPointerAttributes ptr_attr;
        cudaPointerGetAttributes(&ptr_attr, tensor.data);
        device_id = ptr_attr.device;
    }

Chen Xin's avatar
Chen Xin committed
36
    DLDevice device{kDLCPU, device_id};
q.yao's avatar
q.yao committed
37
38
39
40
41
42
43

    switch (tensor.where) {
        case triton::MEMORY_CPU:
            device.device_type = DLDeviceType::kDLCPU;
            break;
        case triton::MEMORY_CPU_PINNED:
            device.device_type = DLDeviceType::kDLCUDAHost;
q.yao's avatar
q.yao committed
44
            break;
q.yao's avatar
q.yao committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        case triton::MEMORY_GPU:
            device.device_type = DLDeviceType::kDLCUDA;
            break;
        default:
            break;
    }

    return device;
}

std::unique_ptr<DLManagedTensor> TritonTensorToDLManagedTensor(triton::Tensor& tensor)
{
    DLDevice device = getDLDevice(tensor);

Chen Xin's avatar
Chen Xin committed
59
    DLDataType data_type{0, 0, 1};
q.yao's avatar
q.yao committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    switch (tensor.type) {
        case triton::TYPE_BOOL:
            data_type.code = DLDataTypeCode::kDLBool;
            data_type.bits = 8;
            break;
        case triton::TYPE_UINT8:
            data_type.code = DLDataTypeCode::kDLUInt;
            data_type.bits = 8;
            break;
        case triton::TYPE_UINT16:
            data_type.code = DLDataTypeCode::kDLUInt;
            data_type.bits = 16;
            break;
        case triton::TYPE_UINT32:
            data_type.code = DLDataTypeCode::kDLUInt;
            data_type.bits = 32;
            break;
        case triton::TYPE_UINT64:
            data_type.code = DLDataTypeCode::kDLUInt;
            data_type.bits = 64;
            break;
        case triton::TYPE_INT8:
        case triton::TYPE_BYTES:
            data_type.code = DLDataTypeCode::kDLInt;
            data_type.bits = 8;
            break;
        case triton::TYPE_INT16:
            data_type.code = DLDataTypeCode::kDLInt;
            data_type.bits = 16;
            break;
        case triton::TYPE_INT32:
            data_type.code = DLDataTypeCode::kDLInt;
            data_type.bits = 32;
            break;
        case triton::TYPE_INT64:
            data_type.code = DLDataTypeCode::kDLInt;
            data_type.bits = 64;
            break;
        case triton::TYPE_FP16:
            data_type.code = DLDataTypeCode::kDLFloat;
            data_type.bits = 16;
            break;
        case triton::TYPE_FP32:
            data_type.code = DLDataTypeCode::kDLFloat;
            data_type.bits = 32;
            break;
        case triton::TYPE_FP64:
            data_type.code = DLDataTypeCode::kDLFloat;
            data_type.bits = 64;
            break;
        case triton::TYPE_BF16:
            data_type.code = DLDataTypeCode::kDLBfloat;
            data_type.bits = 16;
            break;
        default:
            break;
    }
Chen Xin's avatar
Chen Xin committed
117
118
119
120
121
122
123
    DLTensor dl_tensor{const_cast<void*>(tensor.data),
                       device,
                       (int32_t)(tensor.shape.size()),
                       data_type,
                       reinterpret_cast<int64_t*>(const_cast<size_t*>(tensor.shape.data())),
                       (int64_t*)(nullptr),
                       0};
q.yao's avatar
q.yao committed
124

Chen Xin's avatar
Chen Xin committed
125
    return std::unique_ptr<DLManagedTensor>(new DLManagedTensor{dl_tensor, nullptr, [](DLManagedTensor*) {}});
q.yao's avatar
q.yao committed
126
127
128
129
130
131
132
133
134
}

triton::MemoryType getMemoryType(DLDevice device)
{
    switch (device.device_type) {
        case DLDeviceType::kDLCUDAHost:
            return triton::MemoryType::MEMORY_CPU_PINNED;
        case DLDeviceType::kDLCUDA:
            return triton::MemoryType::MEMORY_GPU;
q.yao's avatar
q.yao committed
135
        case DLDeviceType::kDLCPU:
q.yao's avatar
q.yao committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
        default:
            return triton::MemoryType::MEMORY_CPU;
    }
}

triton::DataType getDataType(DLDataType data_type)
{
    switch (data_type.code) {
        case DLDataTypeCode::kDLUInt:
            switch (data_type.bits) {
                case 8:
                    return triton::TYPE_UINT8;
                case 16:
                    return triton::TYPE_UINT16;
                case 32:
                    return triton::TYPE_UINT32;
                case 64:
                    return triton::TYPE_UINT64;
                default:
                    return triton::TYPE_INVALID;
            }
            break;
        case DLDataTypeCode::kDLInt:
            switch (data_type.bits) {
                case 8:
                    return triton::TYPE_INT8;
                case 16:
                    return triton::TYPE_INT16;
                case 32:
                    return triton::TYPE_INT32;
                case 64:
                    return triton::TYPE_INT64;
                default:
                    return triton::TYPE_INVALID;
            }
            break;
        case DLDataTypeCode::kDLFloat:
            switch (data_type.bits) {
                case 16:
                    return triton::TYPE_FP16;
                case 32:
                    return triton::TYPE_FP32;
                case 64:
                    return triton::TYPE_FP64;
                default:
                    return triton::TYPE_INVALID;
            }
            break;
        case DLDataTypeCode::kDLBfloat:
            switch (data_type.bits) {
                case 16:
                    return triton::TYPE_BF16;
                default:
                    return triton::TYPE_INVALID;
            }
            break;
        case DLDataTypeCode::kDLBool:
            return triton::TYPE_BOOL;
        default:
            return triton::TYPE_INVALID;
    }
}

std::shared_ptr<triton::Tensor> DLManagedTensorToTritonTensor(DLManagedTensor* tensor)
{
    auto& dl_tensor = tensor->dl_tensor;
    auto  where     = getMemoryType(dl_tensor.device);
    auto  dtype     = getDataType(dl_tensor.dtype);
    assert(dl_tensor.ndim > 0);
    std::vector<size_t> shape(dl_tensor.shape, dl_tensor.shape + dl_tensor.ndim);
    auto                data = dl_tensor.data;

    return std::make_shared<triton::Tensor>(where, dtype, shape, data);
}

211
212
213
214
215
216
217
DLTensor GetDLTensor(py::object obj)
{
    py::capsule      cap  = obj.attr("__dlpack__")();
    DLManagedTensor* dlmt = static_cast<DLManagedTensor*>(PyCapsule_GetPointer(cap.ptr(), kDlTensorCapsuleName));
    return dlmt->dl_tensor;
}

q.yao's avatar
q.yao committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
PYBIND11_MODULE(_turbomind, m)
{
    // nccl param
    py::class_<ft::NcclParam>(m, "NcclParam")
        .def(py::init<int, int>(), "rank"_a = 0, "world_size"_a = 1)
        .def("__str__", &ft::NcclParam::toString);

    // custom comm
    py::class_<ft::AbstractCustomComm, std::shared_ptr<ft::AbstractCustomComm>>(m, "AbstractCustomComm");

    // instance comm
    py::class_<ft::AbstractInstanceComm>(m, "AbstractInstanceComm");

    // data type
    py::enum_<triton::DataType>(m, "DataType")
        .value("TYPE_INVALID", triton::DataType::TYPE_INVALID)
        .value("TYPE_BOOL", triton::DataType::TYPE_BOOL)
        .value("TYPE_UINT8", triton::DataType::TYPE_UINT8)
        .value("TYPE_UINT16", triton::DataType::TYPE_UINT16)
        .value("TYPE_UINT32", triton::DataType::TYPE_UINT32)
        .value("TYPE_UINT64", triton::DataType::TYPE_UINT64)
        .value("TYPE_INT8", triton::DataType::TYPE_INT8)
        .value("TYPE_INT16", triton::DataType::TYPE_INT16)
        .value("TYPE_INT32", triton::DataType::TYPE_INT32)
        .value("TYPE_INT64", triton::DataType::TYPE_INT64)
        .value("TYPE_FP16", triton::DataType::TYPE_FP16)
        .value("TYPE_FP32", triton::DataType::TYPE_FP32)
        .value("TYPE_FP64", triton::DataType::TYPE_FP64)
        .value("TYPE_BYTES", triton::DataType::TYPE_BYTES)
        .value("TYPE_BF16", triton::DataType::TYPE_BF16);

    // memory type
    py::enum_<triton::MemoryType>(m, "MemoryType")
        .value("MEMORY_CPU", triton::MemoryType::MEMORY_CPU)
        .value("MEMORY_CPU_PINNED", triton::MemoryType::MEMORY_CPU_PINNED)
        .value("MEMORY_GPU", triton::MemoryType::MEMORY_GPU);

    // tensor
    py::class_<triton::Tensor, std::shared_ptr<triton::Tensor>>(m, "Tensor")
        .def_readonly("where", &triton::Tensor::where)
        .def_readonly("type", &triton::Tensor::type)
        .def_readonly("shape", &triton::Tensor::shape)
        .def_readonly("data", &triton::Tensor::data)
        .def(py::init([](const triton::MemoryType   where,
                         const triton::DataType     type,
                         const std::vector<size_t>& shape,
                         const long                 data) {
            auto data_ptr = reinterpret_cast<void*>(data);
            return new triton::Tensor(where, type, shape, data_ptr);
        }))
        .def(
            "view",
            [](triton::Tensor* self, triton::DataType new_type) {
                return new triton::Tensor(self->where, new_type, self->shape, self->data);
            },
            "new_type"_a)
        .def(
            "view",
            [](triton::Tensor* self, std::vector<size_t> new_shape) {
                return new triton::Tensor(self->where, self->type, new_shape, self->data);
            },
            "new_shape"_a)
280
281
282
283
284
285
286
        .def(
            "copy_from",
            [](triton::Tensor* self, py::object obj) {
                py::capsule      cap = obj.attr("__dlpack__")();
                DLManagedTensor* dlmt =
                    static_cast<DLManagedTensor*>(PyCapsule_GetPointer(cap.ptr(), kDlTensorCapsuleName));
                auto src = DLManagedTensorToTritonTensor(dlmt);
q.yao's avatar
q.yao committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
                switch (self->type) {
                    case triton::TYPE_FP16:
                    case triton::TYPE_FP32:
                    case triton::TYPE_INT32:
                    case triton::TYPE_BF16: {
                        auto num_element =
                            std::accumulate(src->shape.begin(), src->shape.end(), 1LL, std::multiplies<int64_t>());
                        auto num_bytes = num_element * dlmt->dl_tensor.dtype.bits / 8;
                        ft::FT_CHECK(self->shape.size() == 1 && num_bytes == self->shape[0]);
                        cudaMemcpy(
                            const_cast<void*>(self->data), const_cast<void*>(src->data), num_bytes, cudaMemcpyDefault);
                        break;
                    }
                    default:
                        ft::FT_CHECK(0);
302
303
304
                }
            },
            "tensor"_a)
q.yao's avatar
q.yao committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        .def(
            "__dlpack__",
            [](triton::Tensor* self, long stream) {
                auto tensor_ptr = TritonTensorToDLManagedTensor(*self);
                return new py::capsule(tensor_ptr.release(), kDlTensorCapsuleName, [](PyObject* obj) {
                    DLManagedTensor* dlmt =
                        static_cast<DLManagedTensor*>(PyCapsule_GetPointer(obj, kDlTensorCapsuleName));
                    if (dlmt) {
                        dlmt->deleter(dlmt);
                    }
                    else {
                        // The tensor has been deleted. Clear any error from
                        // PyCapsule_GetPointer.
                        PyErr_Clear();
                    }
                });
            },
            "stream"_a = 0)
        .def("__dlpack_device__", [](triton::Tensor* self) {
            auto device = getDLDevice(*self);
            return std::tuple<int, int>(int(device.device_type), device.device_id);
        });
    m.def(
        "from_dlpack",
        [](py::object obj) {
            py::capsule      cap = obj.attr("__dlpack__")();
            DLManagedTensor* dlmt =
                static_cast<DLManagedTensor*>(PyCapsule_GetPointer(cap.ptr(), kDlTensorCapsuleName));
            auto ret = DLManagedTensorToTritonTensor(dlmt);
            return ret;
        },
        "dl_managed_tensor"_a);

    // transformer model instance
    py::bind_map<TensorMap, std::shared_ptr<TensorMap>>(m, "TensorMap");
    py::class_<AbstractTransformerModelInstance>(m, "AbstractTransformerModelInstance")
        .def(
            "forward",
AllentDan's avatar
AllentDan committed
343
344
345
346
            [](AbstractTransformerModelInstance* model,
               std::shared_ptr<TensorMap>        input_tensors,
               ft::AbstractInstanceComm*         inst_comm) { return model->forward(input_tensors, inst_comm); },
            py::call_guard<py::gil_scoped_release>(),
q.yao's avatar
q.yao committed
347
            "input_tensors"_a,
q.yao's avatar
q.yao committed
348
349
350
351
352
353
354
355
356
            "inst_comm"_a = nullptr)
        .def(
            "register_callback",
            [](AbstractTransformerModelInstance* self, triton_stream_cb_t cb, py::object ctx) {
                self->registerCallback(cb, ctx.ptr());
            },
            "callback"_a,
            "context"_a = nullptr)
        .def("unregister_callback", &AbstractTransformerModelInstance::unRegisterCallback);
q.yao's avatar
q.yao committed
357
358
359

    // transformer model
    py::class_<AbstractTransformerModel, std::shared_ptr<AbstractTransformerModel>>(m, "AbstractTransformerModel")
AllentDan's avatar
AllentDan committed
360
361
362
        .def_static(
            "create_llama_model",
            [](std::string model_dir,
363
               std::string config,
AllentDan's avatar
AllentDan committed
364
365
366
367
               size_t      tensor_para_size,
               size_t      pipeline_para_size,
               int         enable_custom_all_reduce,
               std::string data_type) -> std::shared_ptr<AbstractTransformerModel> {
Chen Xin's avatar
Chen Xin committed
368
369
370
371
372
373
374
375
                auto gil_control = [state = PyGILState_STATE{}](int op) mutable {
                    if (op) {
                        state = PyGILState_Ensure();
                    }
                    else {
                        PyGILState_Release(state);
                    }
                };
376
                if (data_type == "half" || data_type == "fp16" || data_type == "int4") {
Chen Xin's avatar
Chen Xin committed
377
                    auto model = std::make_shared<LlamaTritonModel<half>>(
378
                        tensor_para_size, pipeline_para_size, enable_custom_all_reduce, model_dir, config);
Chen Xin's avatar
Chen Xin committed
379
380
                    model->setFfiLock(gil_control);
                    return model;
AllentDan's avatar
AllentDan committed
381
                }
q.yao's avatar
q.yao committed
382
383
384
385
386
387
388
389
390
391
                else if (data_type == "bf16") {
#ifdef ENABLE_BF16
                    auto model = std::make_shared<LlamaTritonModel<__nv_bfloat16>>(
                        tensor_para_size, pipeline_para_size, enable_custom_all_reduce, model_dir, config);
                    model->setFfiLock(gil_control);
                    return model;
#else
                    throw std::runtime_error("Error: turbomind has not been built with bf16 support.");
#endif
                }
AllentDan's avatar
AllentDan committed
392
                else {
Chen Xin's avatar
Chen Xin committed
393
                    auto model = std::make_shared<LlamaTritonModel<float>>(
394
                        tensor_para_size, pipeline_para_size, enable_custom_all_reduce, model_dir, config);
Chen Xin's avatar
Chen Xin committed
395
396
                    model->setFfiLock(gil_control);
                    return model;
AllentDan's avatar
AllentDan committed
397
398
399
                }
            },
            "model_dir"_a,
400
            "config"_a                   = "",
AllentDan's avatar
AllentDan committed
401
402
403
404
            "tensor_para_size"_a         = 1,
            "pipeline_para_size"_a       = 1,
            "enable_custom_all_reduce"_a = 0,
            "data_type"_a                = "half")
q.yao's avatar
q.yao committed
405
406
407
408
409
410
411
        .def("create_nccl_params",
             &AbstractTransformerModel::createNcclParams,
             "node_id"_a,
             "device_id_start"_a = 0,
             "multi_node"_a      = false)
        .def(
            "create_custom_comms",
q.yao's avatar
q.yao committed
412
            [](AbstractTransformerModel* model, int world_size) {
q.yao's avatar
q.yao committed
413
414
415
416
417
418
419
420
                std::vector<std::shared_ptr<ft::AbstractCustomComm>> ret;
                model->createCustomComms(&ret, world_size);
                return ret;
            },
            "world_size"_a)
        .def("create_instance_comm", &AbstractTransformerModel::createInstanceComm, "size"_a)
        .def(
            "create_model_instance",
q.yao's avatar
q.yao committed
421
            [](AbstractTransformerModel*                                         model,
q.yao's avatar
q.yao committed
422
423
424
425
426
427
428
429
               int                                                               deviceId,
               int                                                               rank,
               long                                                              stream_id,
               std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>> nccl_params,
               std::shared_ptr<ft::AbstractCustomComm>                           custom_all_reduce_comm = nullptr) {
                cudaStream_t stream = reinterpret_cast<cudaStream_t>(stream_id);
                return model->createModelInstance(deviceId, rank, stream, nccl_params, custom_all_reduce_comm);
            },
q.yao's avatar
q.yao committed
430
            py::call_guard<py::gil_scoped_release>(),
q.yao's avatar
q.yao committed
431
432
433
434
435
            "device_id"_a,
            "rank"_a,
            "stream"_a,
            "nccl_params"_a,
            "custom_all_reduce_comm"_a = nullptr)
q.yao's avatar
q.yao committed
436
437
438
439
440
        .def("create_shared_weights",
             &AbstractTransformerModel::createSharedWeights,
             py::call_guard<py::gil_scoped_release>(),
             "device_id"_a,
             "rank"_a)
441
442
443
444
445
446
447
448
449
        .def(
            "get_params",
            [](AbstractTransformerModel* model, int deviceId, int rank) {
                TensorMap output = model->getParams(deviceId, rank);
                return output;
            },
            py::call_guard<py::gil_scoped_release>(),
            "device_id"_a,
            "rank"_a)
q.yao's avatar
q.yao committed
450
451
452
453
        .def("__str__", &AbstractTransformerModel::toString)
        .def("__repr__", &AbstractTransformerModel::toString)
        .def("get_tensor_para_size", &AbstractTransformerModel::getTensorParaSize)
        .def("get_pipeline_para_size", &AbstractTransformerModel::getPipelineParaSize);
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

    m.def("transpose_qk_s4_k_m8", [](py::object src, py::object dst, int m, int k, int size_per_head) {
        auto src_tensor = GetDLTensor(src);
        auto dst_tensor = GetDLTensor(dst);

        turbomind::transpose_qk_s4_k_m8_hf(
            (uint32_t*)dst_tensor.data, (const uint32_t*)src_tensor.data, m, k, size_per_head, nullptr);
    });

    m.def("fuse_w1_w3_s4_k_m8", [](py::object src, py::object dst, int m, int k) {
        auto src_tensor = GetDLTensor(src);
        auto dst_tensor = GetDLTensor(dst);

        turbomind::fuse_w1_w3_s4_k_m8((uint32_t*)dst_tensor.data, (const uint32_t*)src_tensor.data, m, k, nullptr);
    });

    m.def("convert_s4_k_m8",
          [](py::object A_dst,
             py::object Q_dst,
             py::object ws,
             py::object A_src,
             py::object scales,
             py::object qzeros,
             int        m,
             int        k,
             int        group_size) {
              auto a_dst = GetDLTensor(A_dst);
              auto q_dst = GetDLTensor(Q_dst);
              auto w     = GetDLTensor(ws);
              auto a_src = GetDLTensor(A_src);
              auto s     = GetDLTensor(scales);
              auto qz    = GetDLTensor(qzeros);

              turbomind::convert_s4_k_m8((uint32_t*)a_dst.data,
                                         (half2*)q_dst.data,
                                         (half*)w.data,
                                         (const uint32_t*)a_src.data,
                                         (const half*)s.data,
                                         (const uint32_t*)qz.data,
                                         m,
                                         k,
                                         group_size,
                                         nullptr);
          });

    m.def("dequantize_s4", [](py::object src, py::object dst) {
        auto src_tensor = GetDLTensor(src);
        auto dst_tensor = GetDLTensor(dst);
        auto src_count  = std::accumulate(src_tensor.shape, src_tensor.shape + src_tensor.ndim, size_t{1});
        auto dst_count  = std::accumulate(dst_tensor.shape, dst_tensor.shape + dst_tensor.ndim, size_t{1});
        turbomind::FT_CHECK(src_count * 8 == dst_count);
        turbomind::dequantize_s4((uint4*)dst_tensor.data, (uint32_t*)src_tensor.data, src_count, nullptr);
    });
507
}