llama_kernels.cu 38.1 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
// Copyright (c) OpenMMLab. All rights reserved.

lvhan028's avatar
lvhan028 committed
3
#include "src/turbomind/kernels/decoder_masked_multihead_attention_utils.h"
Li Zhang's avatar
Li Zhang committed
4
5
#include "src/turbomind/kernels/decoder_multihead_attention/array_ops.h"
#include "src/turbomind/kernels/gemm_s_f16/common.h"
lvhan028's avatar
lvhan028 committed
6
#include "src/turbomind/kernels/reduce_kernel_utils.cuh"
Chen Xin's avatar
Chen Xin committed
7
#include "src/turbomind/macro.h"
lvhan028's avatar
lvhan028 committed
8
9
10
#include "src/turbomind/models/llama/llama_kernels.h"
#include "src/turbomind/models/llama/llama_utils.h"
#include "src/turbomind/utils/cuda_type_utils.cuh"
Li Zhang's avatar
Li Zhang committed
11
#include "src/turbomind/utils/cuda_utils.h"
12
#include "src/turbomind/utils/dispatch.h"
Li Zhang's avatar
Li Zhang committed
13
#include "src/turbomind/utils/logger.h"
Li Zhang's avatar
Li Zhang committed
14
15
16
#include <algorithm>
#include <cstdint>
#include <cub/block/block_reduce.cuh>
Li Zhang's avatar
Li Zhang committed
17
#include <type_traits>
18
#include <utility>
Li Zhang's avatar
Li Zhang committed
19

lvhan028's avatar
lvhan028 committed
20
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

// fp16, bf16
// n is divided by 2 for this impl
template<typename T>
__global__ void rootMeanSquareNorm(T* out, const T* input, const T* scale, float eps, int m, int n)
{
    using T2 = typename TypeConverter<T>::Type;
    __shared__ float s_inv_mean;
    float            mean = 0.f;

    T2*       out_ptr   = (T2*)out;
    const T2* input_ptr = (const T2*)input;
    const T2* scale_ptr = (const T2*)scale;

    for (uint idx = threadIdx.x; idx < n; idx += blockDim.x) {
        float2 tmp2 = cuda_cast<float2>(input_ptr[blockIdx.x * n + idx]);
        mean += tmp2.x * tmp2.x;
        mean += tmp2.y * tmp2.y;
    }

    mean = blockReduceSum<float>(mean);
    if (threadIdx.x == 0) {
        s_inv_mean = rsqrt(.5f * mean / (float)n + eps);
    }
    __syncthreads();

    for (uint idx = threadIdx.x; idx < n; idx += blockDim.x) {
        float2 tmp2                   = cuda_cast<float2>(input_ptr[blockIdx.x * n + idx]);
        float2 sca2                   = cuda_cast<float2>(scale_ptr[idx]);
        tmp2.x                        = tmp2.x * s_inv_mean * sca2.x;
        tmp2.y                        = tmp2.y * s_inv_mean * sca2.y;
        out_ptr[blockIdx.x * n + idx] = cuda_cast<T2>(tmp2);
    }
}

template<>
__global__ void rootMeanSquareNorm(float* out, const float* input, const float* scale, float eps, int m, int n)
{
    __shared__ float s_inv_mean;
    float            mean = 0.f;

    for (uint idx = threadIdx.x; idx < n; idx += blockDim.x) {
        float tmp = input[blockIdx.x * n + idx];
        mean += tmp * tmp;
    }

    mean = blockReduceSum<float>(mean);
    if (threadIdx.x == 0) {
        s_inv_mean = rsqrt(mean / static_cast<float>(n) + eps);
    }
    __syncthreads();

    for (uint idx = threadIdx.x; idx < n; idx += blockDim.x) {
        float tmp                 = input[blockIdx.x * n + idx];
        out[blockIdx.x * n + idx] = tmp * s_inv_mean * scale[idx];
    }
}

template<typename T>
void invokeRootMeanSquareNorm(T* out, const T* input, const T* scale, float eps, int m, int n, cudaStream_t stream)
{
    if (sizeof(T) == 2) {
        FT_CHECK(n % 2 == 0);
        n /= 2;
    }
    dim3 grid(m);
    dim3 block(std::min(n, 1024));
    rootMeanSquareNorm<<<grid, block, 0, stream>>>(out, input, scale, eps, m, n);
}

template void invokeRootMeanSquareNorm(float*, const float*, const float*, float, int, int, cudaStream_t);
template void invokeRootMeanSquareNorm(half*, const half*, const half*, float, int, int, cudaStream_t);
q.yao's avatar
q.yao committed
93
94
95
96
#ifdef ENABLE_BF16
template void
invokeRootMeanSquareNorm(__nv_bfloat16*, const __nv_bfloat16*, const __nv_bfloat16*, float, int, int, cudaStream_t);
#endif
Li Zhang's avatar
Li Zhang committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

// #ifdef ENABLE_BF16

// template void invokeRootMeanSquareNorm(__nv_bfloat16*, const __nv_bfloat16*, float, int, int, cudaStream_t);

// #endif

template<typename T, typename T0>
__device__ T saturate_cast(T0 x)
{
    return x;
}

template<>
__device__ half saturate_cast<half, float>(float x)
{
    return (x > 64512.f || x < -64512.f) ? (x > 0.f ? 64512.f : -64512.f) : x;
}

template<typename T>
__global__ void addResidual(T* out, const T* in, size_t n)
{
    auto idx = threadIdx.x + (size_t)blockIdx.x * blockDim.x;
    if (idx < n) {
        out[idx] = static_cast<T>(static_cast<float>(out[idx]) + static_cast<float>(in[idx]));
    }
}

template<typename T>
void invokeAddResidual(T* out, const T* in, int m, int n, cudaStream_t stream)
{
    auto total = static_cast<size_t>(m) * n;
Chen Xin's avatar
Chen Xin committed
129
    dim3 block(std::min((unsigned long)total, 1024UL));
Li Zhang's avatar
Li Zhang committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    dim3 grid((total + block.x - 1) / block.x);

    addResidual<<<grid, block, 0, stream>>>(out, in, total);
}

template void invokeAddResidual(float*, const float*, int, int, cudaStream_t);
template void invokeAddResidual(half*, const half*, int, int, cudaStream_t);

// ids [seq_len, batch_size]
// input_ids [batch_size, max_input_len]
__global__ void
fixInputIds(int* ids, const int* input_ids, const int* input_lengths, int batch_size, int seq_len, int max_input_len)
{
    int seq_id   = threadIdx.x;
    int batch_id = blockIdx.x;
    for (; seq_id < input_lengths[batch_id]; seq_id += blockDim.x) {
        ids[seq_id * batch_size + batch_id] = input_ids[batch_id * max_input_len + seq_id];
    }
}

void invokeFixInputIds(int*         ids,
                       const int*   input_ids,
                       const int*   input_lengths,
                       int          batch_size,
                       int          seq_len,
                       int          max_input_len,
                       cudaStream_t st)
{
    dim3 block(std::min(1024, max_input_len));
    dim3 grid(batch_size);
    fixInputIds<<<grid, block, 0, st>>>(ids, input_ids, input_lengths, batch_size, seq_len, max_input_len);
}

template<typename T>
__global__ void sliceCausalMask(T* mask, int seq_len, int key_len, int step)
{
    mask += (size_t)blockIdx.x * seq_len * key_len;
    for (int i = threadIdx.x; i < seq_len * key_len; i += blockDim.x) {
        int row = i / key_len;
        int col = i % key_len;
        if (col <= row + step) {
            mask[i] = static_cast<T>(1.f);
        }
        else {
            mask[i] = static_cast<T>(0.f);
        }
    }
}

// [step: step+Q, :] of the K*K causal mask
template<typename T>
void invokeSliceCausalMask(T* mask, int seq_len, int key_len, int step, int batch_size, cudaStream_t stream)
{
    FT_CHECK(step == key_len - seq_len);
    sliceCausalMask<<<batch_size, 256, 0, stream>>>(mask, seq_len, key_len, step);
}

template void invokeSliceCausalMask(half*, int, int, int, int, cudaStream_t);
template void invokeSliceCausalMask(float*, int, int, int, int, cudaStream_t);

// mask [bsz, max_q_len, max_k_len]

template<typename T>
__global__ void createCausalMasks(T* mask, const int* q_lens, const int* k_lens, int max_q_len, int max_k_len)
{
    const auto q_len = q_lens[blockIdx.x];
    const auto k_len = k_lens[blockIdx.x];
    mask += blockIdx.x * max_q_len * max_k_len;
    for (int i = threadIdx.x; i < max_q_len * max_k_len; i += blockDim.x) {
        const int q        = i / max_k_len;  // [0, max_q_len)
        const int k        = i % max_k_len;  // [0, max_k_len)
        bool      is_valid = q < q_len && k < k_len && k <= q + (k_len - q_len);
        mask[i]            = static_cast<T>(is_valid);
    }
}

template<typename T>
void invokeCreateCausalMasks(
    T* mask, const int* q_lens, const int* k_lens, int max_q_len, int max_k_len, int batch_size, cudaStream_t stream)
{
    createCausalMasks<<<batch_size, 512, 0, stream>>>(mask, q_lens, k_lens, max_q_len, max_k_len);
}

template void invokeCreateCausalMasks(float* mask, const int*, const int*, int, int, int, cudaStream_t);
template void invokeCreateCausalMasks(half* mask, const int*, const int*, int, int, int, cudaStream_t);
q.yao's avatar
q.yao committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#ifdef ENABLE_BF16
template<>
__global__ void createCausalMasks<__nv_bfloat16>(
    __nv_bfloat16* mask, const int* q_lens, const int* k_lens, int max_q_len, int max_k_len)
{
    const auto q_len = q_lens[blockIdx.x];
    const auto k_len = k_lens[blockIdx.x];
    mask += blockIdx.x * max_q_len * max_k_len;
    for (int i = threadIdx.x; i < max_q_len * max_k_len; i += blockDim.x) {
        const int q        = i / max_k_len;  // [0, max_q_len)
        const int k        = i % max_k_len;  // [0, max_k_len)
        bool      is_valid = q < q_len && k < k_len && k <= q + (k_len - q_len);
        mask[i]            = static_cast<__nv_bfloat16>(float(is_valid));
    }
}
template void invokeCreateCausalMasks(__nv_bfloat16* mask, const int*, const int*, int, int, int, cudaStream_t);
#endif
Li Zhang's avatar
Li Zhang committed
232

Li Zhang's avatar
Li Zhang committed
233
234
template<typename Ti, typename To>
struct ExtendKvCache {
Li Zhang's avatar
Li Zhang committed
235

Li Zhang's avatar
Li Zhang committed
236
237
    static constexpr int MaxElemSize = std::max(sizeof(Ti), sizeof(To));
    static constexpr int X_ELEMS     = 16 / MaxElemSize;
Li Zhang's avatar
Li Zhang committed
238

Li Zhang's avatar
Li Zhang committed
239
240
    using Vi = Array<Ti, X_ELEMS>;
    using Vo = Array<To, X_ELEMS>;
Li Zhang's avatar
Li Zhang committed
241

Li Zhang's avatar
Li Zhang committed
242
    using Transform = ConvertKvCache<Ti, To>;
Li Zhang's avatar
Li Zhang committed
243

Li Zhang's avatar
Li Zhang committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    struct Params {
        To**       k_dst_ptrs;
        To**       v_dst_ptrs;
        const Ti*  k_src;
        const Ti*  v_src;
        const int* cu_block_counts;
        const int* query_length;
        const int* context_length;
        int        block_length;
        size_t     dst_layer_offset;
        int        max_q_len;
        int        head_num;
        int        head_dim;
        Transform  transform_k;
        Transform  transform_v;
    };
Li Zhang's avatar
Li Zhang committed
260

Li Zhang's avatar
Li Zhang committed
261
262
263
    __device__ void operator()(const Params& params) const
    {
        const int batch_id = blockIdx.y;
Li Zhang's avatar
Li Zhang committed
264

Li Zhang's avatar
Li Zhang committed
265
266
267
        const int query_len    = params.query_length[batch_id];
        const int history_len  = params.context_length[batch_id] - query_len;
        const int cu_block_cnt = params.cu_block_counts[batch_id];
Li Zhang's avatar
Li Zhang committed
268

Li Zhang's avatar
Li Zhang committed
269
        const int head_id = blockIdx.z;
Li Zhang's avatar
Li Zhang committed
270

Li Zhang's avatar
Li Zhang committed
271
272
273
274
        const int size_per_head_div_x = params.head_dim / X_ELEMS;
        const int idx                 = blockIdx.x * blockDim.x + threadIdx.x;
        const int head_size_id        = idx % size_per_head_div_x;
        const int seq_len_id          = idx / size_per_head_div_x;
Li Zhang's avatar
Li Zhang committed
275

Li Zhang's avatar
Li Zhang committed
276
277
        const int cache_block_index  = (seq_len_id + history_len) / params.block_length;
        const int cache_block_offset = (seq_len_id + history_len) % params.block_length;
Li Zhang's avatar
Li Zhang committed
278

Li Zhang's avatar
Li Zhang committed
279
280
        const auto k_val_src = params.k_src;
        const auto v_val_src = params.v_src;
Li Zhang's avatar
Li Zhang committed
281

Li Zhang's avatar
Li Zhang committed
282
283
        const auto k_val_dst = (params.k_dst_ptrs + cu_block_cnt)[cache_block_index] + params.dst_layer_offset;
        const auto v_val_dst = (params.v_dst_ptrs + cu_block_cnt)[cache_block_index] + params.dst_layer_offset;
Li Zhang's avatar
Li Zhang committed
284

Li Zhang's avatar
Li Zhang committed
285
286
287
288
289
        if (seq_len_id < query_len) {
            // [B, H, s, D/x] -> [H, S[t:t+s], D/x]
            const int64_t dst_idx = head_id * params.block_length * size_per_head_div_x +  // H
                                    cache_block_offset * size_per_head_div_x +             // s + offset
                                    head_size_id;                                          // D/x
Li Zhang's avatar
Li Zhang committed
290

Li Zhang's avatar
Li Zhang committed
291
292
293
294
            const int64_t src_idx = batch_id * params.head_num * params.max_q_len * size_per_head_div_x +  // B
                                    head_id * params.max_q_len * size_per_head_div_x +                     // H
                                    seq_len_id * size_per_head_div_x +                                     // s
                                    head_size_id;                                                          // D/x
Li Zhang's avatar
Li Zhang committed
295

Li Zhang's avatar
Li Zhang committed
296
297
            Vi k_vi;
            Vi v_vi;
Li Zhang's avatar
Li Zhang committed
298

Li Zhang's avatar
Li Zhang committed
299
300
            Ldg(k_vi, k_val_src + src_idx * X_ELEMS);
            Ldg(v_vi, v_val_src + src_idx * X_ELEMS);
Li Zhang's avatar
Li Zhang committed
301

Li Zhang's avatar
Li Zhang committed
302
303
            Vo k_vo = params.transform_k(k_vi);
            Vo v_vo = params.transform_v(v_vi);
Li Zhang's avatar
Li Zhang committed
304

Li Zhang's avatar
Li Zhang committed
305
306
307
308
309
            Store(k_val_dst + dst_idx * X_ELEMS, k_vo);
            Store(v_val_dst + dst_idx * X_ELEMS, v_vo);
        }
    }
};
310

Li Zhang's avatar
Li Zhang committed
311
namespace {
312

Li Zhang's avatar
Li Zhang committed
313
314
template<class Kernel, class Params>
__global__ void KernelWrapper(Params params)
AllentDan's avatar
AllentDan committed
315
{
Li Zhang's avatar
Li Zhang committed
316
317
    Kernel{}(params);
};
318

Li Zhang's avatar
Li Zhang committed
319
}  // namespace
320
321

template<typename T>
Li Zhang's avatar
Li Zhang committed
322
323
void invokeExtendKVCache(void**       k_dst_ptrs,
                         void**       v_dst_ptrs,
Li Zhang's avatar
Li Zhang committed
324
325
                         const T*     k_src,
                         const T*     v_src,
Li Zhang's avatar
Li Zhang committed
326
                         const int*   cu_block_counts,
Li Zhang's avatar
Li Zhang committed
327
                         const int*   query_length,
Li Zhang's avatar
Li Zhang committed
328
329
330
331
                         const int*   context_length,
                         int          batch_size,
                         int          block_length,
                         size_t       dst_layer_offset,
Li Zhang's avatar
Li Zhang committed
332
                         int          max_q_len,
Li Zhang's avatar
Li Zhang committed
333
334
                         int          head_dim,
                         int          head_num,
335
                         int          quant,
Li Zhang's avatar
Li Zhang committed
336
337
                         const float* kv_params,
                         cudaStream_t stream)
Li Zhang's avatar
Li Zhang committed
338
339
340
{
    constexpr int block_sz = 128;

Li Zhang's avatar
Li Zhang committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    auto fn = [&](auto value) {
        using Tout   = decltype(value);
        using Kernel = ExtendKvCache<T, Tout>;

        dim3 grid((max_q_len * head_dim / Kernel::X_ELEMS + block_sz - 1) / block_sz, batch_size, head_num);

        typename Kernel::Params params{(Tout**)k_dst_ptrs,
                                       (Tout**)v_dst_ptrs,
                                       k_src,
                                       v_src,
                                       cu_block_counts,
                                       query_length,
                                       context_length,
                                       block_length,
                                       dst_layer_offset,
                                       max_q_len,
                                       head_num,
                                       head_dim,
                                       {kv_params[0], kv_params[1]},
                                       {kv_params[2], kv_params[3]}};

        KernelWrapper<Kernel><<<grid, block_sz, 0, stream>>>(params);
    };

    (quant & QuantPolicy::kCacheKVInt8) ? fn(int8_t{}) : fn(T{});
Li Zhang's avatar
Li Zhang committed
366
367
}

Li Zhang's avatar
Li Zhang committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
template void invokeExtendKVCache(void**       k_dst_ptrs,
                                  void**       v_dst_ptrs,
                                  const float* k_src,
                                  const float* v_src,
                                  const int*   cu_block_counts,
                                  const int*   query_length,
                                  const int*   history_length,
                                  int          batch_size,
                                  int          block_length,
                                  size_t       dst_layer_offset,
                                  int          max_q_len,
                                  int          head_dim,
                                  int          head_num,
                                  int          quant,
                                  const float* kv_scale,
                                  cudaStream_t stream);

template void invokeExtendKVCache(void**       k_dst_ptrs,
                                  void**       v_dst_ptrs,
                                  const half*  k_src,
                                  const half*  v_src,
                                  const int*   cu_block_counts,
                                  const int*   query_length,
                                  const int*   history_length,
                                  int          batch_size,
                                  int          block_length,
                                  size_t       dst_layer_offset,
                                  int          max_q_len,
                                  int          head_dim,
                                  int          head_num,
                                  int          quant,
                                  const float* kv_scale,
                                  cudaStream_t stream);
q.yao's avatar
q.yao committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#ifdef ENABLE_BF16
template void invokeExtendKVCache(void**               k_dst_ptrs,
                                  void**               v_dst_ptrs,
                                  const __nv_bfloat16* k_src,
                                  const __nv_bfloat16* v_src,
                                  const int*           cu_block_counts,
                                  const int*           query_length,
                                  const int*           history_length,
                                  int                  batch_size,
                                  int                  block_length,
                                  size_t               dst_layer_offset,
                                  int                  max_q_len,
                                  int                  head_dim,
                                  int                  head_num,
                                  int                  quant,
                                  const float*         kv_scale,
                                  cudaStream_t         stream);
#endif
Li Zhang's avatar
Li Zhang committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

template<typename Ti, typename To>
struct TransposeKvCache {
    static constexpr int MaxElemSize = std::max(sizeof(Ti), sizeof(To));
    static constexpr int X_ELEMS     = 16 / MaxElemSize;

    using Vi = Array<Ti, X_ELEMS>;
    using Vo = Array<To, X_ELEMS>;

    using Transform = ConvertKvCache<Ti, To>;

    struct Params {
        To*        k_dst;
        To*        v_dst;
        const Ti** k_src;
        const Ti** v_src;
        size_t     src_offset;
        int        head_num;
        int        head_n_rep;
        int        size_per_head;
        const int* seq_length;
        int        max_kv_len;
        int        max_seq_len;
        Transform  transform_k;
        Transform  transform_v;
        // float      k_scale;
        // float      k_zp;
        // float      v_scale;
        // float      v_zp;
    };

    __device__ void operator()(const Params& params) const
    {
        const int batch_id = blockIdx.y;
        const int head_id  = blockIdx.z;

        const int idx                 = blockIdx.x * blockDim.x + threadIdx.x;
        const int size_per_head_div_x = params.size_per_head / X_ELEMS;

        const auto k_src = params.k_src[batch_id] + params.src_offset;
        const auto v_src = params.v_src[batch_id] + params.src_offset;
        const auto k_dst = params.k_dst;
        const auto v_dst = params.v_dst;

        const auto seq_len = params.seq_length[batch_id];

        const int v_head_size_id = idx % size_per_head_div_x;
        const int v_seq_len_id   = idx / size_per_head_div_x;

        if (v_seq_len_id < seq_len) {
            // [B, H, s, D/x] <- [B, H, S[:s], D/x]
            const int64_t src_idx = head_id / params.head_n_rep * size_per_head_div_x * params.max_seq_len +  // H
                                    v_seq_len_id * size_per_head_div_x +                                      // s
                                    v_head_size_id;                                                           // D/x

            const int64_t dst_idx = batch_id * params.head_num * size_per_head_div_x * params.max_kv_len +  // B
                                    head_id * size_per_head_div_x * params.max_kv_len +                     // H
                                    v_seq_len_id * size_per_head_div_x +                                    // s
                                    v_head_size_id;                                                         // D/x

            Vi k_vi;
            Vi v_vi;

            Ldg(k_vi, k_src + src_idx * X_ELEMS);
            Ldg(v_vi, v_src + src_idx * X_ELEMS);

            Vo k_vo = params.transform_k(k_vi);
            Vo v_vo = params.transform_v(v_vi);

            Store(k_dst + dst_idx * X_ELEMS, k_vo);
            Store(v_dst + dst_idx * X_ELEMS, v_vo);
        }
Li Zhang's avatar
Li Zhang committed
491
    }
Li Zhang's avatar
Li Zhang committed
492
};
Li Zhang's avatar
Li Zhang committed
493
494
495
496
497
498
499
500
501
502
503
504
505

template<typename T>
void invokeTransposeKVCache(T*           key_cache_trans,
                            T*           val_cache_trans,
                            const T**    key_cache,
                            const T**    val_cache,
                            size_t       src_offset,
                            int          batch_size,
                            const int*   key_length,
                            int          max_kv_len,
                            int          max_seq_len,
                            int          size_per_head,
                            int          head_num,
506
                            int          head_n_rep,
507
508
                            cudaStream_t stream,
                            int          quant,
Li Zhang's avatar
Li Zhang committed
509
                            const float* kv_params)
Li Zhang's avatar
Li Zhang committed
510
511
{
    constexpr int block_sz = 128;
Li Zhang's avatar
Li Zhang committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

    auto fn = [&](auto value) {
        using Tin    = decltype(value);
        using Kernel = TransposeKvCache<Tin, T>;

        dim3 grid((max_kv_len * size_per_head / Kernel::X_ELEMS + block_sz - 1) / block_sz, batch_size, head_num);

        typename Kernel::Params params{key_cache_trans,
                                       val_cache_trans,
                                       (const Tin**)key_cache,
                                       (const Tin**)val_cache,
                                       src_offset,
                                       head_num,
                                       head_n_rep,
                                       size_per_head,
                                       key_length,
                                       max_kv_len,
                                       max_seq_len,
                                       {kv_params[0], kv_params[1]},
                                       {kv_params[2], kv_params[3]}};

        KernelWrapper<Kernel><<<grid, block_sz, 0, stream>>>(params);
    };

    (quant & QuantPolicy::kCacheKVInt8) ? fn(int8_t{}) : fn(T{});
Li Zhang's avatar
Li Zhang committed
537
538
}

AllentDan's avatar
AllentDan committed
539
540
541
542
543
544
545
546
547
548
549
template void invokeTransposeKVCache(float*,
                                     float*,
                                     const float**,
                                     const float**,
                                     size_t,
                                     int,
                                     const int*,
                                     int,
                                     int,
                                     int,
                                     int,
550
                                     int,
AllentDan's avatar
AllentDan committed
551
552
553
554
555
556
557
558
559
560
561
562
563
564
                                     cudaStream_t stream,
                                     int,
                                     const float*);
template void invokeTransposeKVCache(half*,
                                     half*,
                                     const half**,
                                     const half**,
                                     size_t,
                                     int,
                                     const int*,
                                     int,
                                     int,
                                     int,
                                     int,
565
                                     int,
AllentDan's avatar
AllentDan committed
566
567
568
                                     cudaStream_t stream,
                                     int,
                                     const float*);
q.yao's avatar
q.yao committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
#ifdef ENABLE_BF16
template void invokeTransposeKVCache(__nv_bfloat16*,
                                     __nv_bfloat16*,
                                     const __nv_bfloat16**,
                                     const __nv_bfloat16**,
                                     size_t,
                                     int,
                                     const int*,
                                     int,
                                     int,
                                     int,
                                     int,
                                     int,
                                     cudaStream_t stream,
                                     int,
                                     const float*);
#endif
Li Zhang's avatar
Li Zhang committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603

__global__ void gatherOutput(int*       output_ids,
                             const int* ids,
                             const int* context_length,
                             int        max_context_len,
                             int        max_gen_step,
                             int        max_output_len,
                             int        batch_size)
{
    const int batch_id    = blockIdx.x;
    const int context_len = context_length[batch_id];
    output_ids += batch_id * max_output_len;
    for (int src_idx = threadIdx.x; src_idx < max_gen_step; src_idx += blockDim.x) {
        // skip padding for src
        if (context_len <= src_idx && src_idx < max_context_len) {
            continue;
        }
        // skip padding for dst
604
605
606
607
        const int dst_idx = src_idx < context_len ? src_idx : src_idx - (max_context_len - context_len);
        if (dst_idx < max_output_len) {
            output_ids[dst_idx] = ids[src_idx * batch_size + batch_id];
        }
Li Zhang's avatar
Li Zhang committed
608
609
610
611
612
613
614
615
616
617
618
619
    }
}

void invokeGatherOutput(int*         output_ids,
                        const int*   ids,
                        const int*   context_length,
                        int          max_context_len,
                        int          max_gen_step,
                        int          max_output_len,
                        int          batch_size,
                        cudaStream_t stream)
{
Li Zhang's avatar
Li Zhang committed
620
    int block_size = 128;
Li Zhang's avatar
Li Zhang committed
621
622
623
624
625
    int grid_size  = batch_size;
    gatherOutput<<<grid_size, block_size, 0, stream>>>(
        output_ids, ids, context_length, max_context_len, max_gen_step, max_output_len, batch_size);
}

Li Zhang's avatar
Li Zhang committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
__global__ void updateOutput(int**      request_output_ids_ptrs,
                             int**      request_seqlen_ptrs,
                             const int* output_ids,
                             const int* sequence_lengths,
                             const int* request_output_ids_lens,
                             int        max_session_len,
                             bool       token_generated)
{
    const int batch_id = blockIdx.x;

    auto request_output_ids = request_output_ids_ptrs[batch_id];
    auto request_seqlen     = request_seqlen_ptrs[batch_id];

    output_ids += max_session_len * batch_id;

    const int seqlen     = sequence_lengths[batch_id] + (int)token_generated;
    const int output_len = min(seqlen, request_output_ids_lens[batch_id]);

    for (int i = threadIdx.x; i < output_len; i += blockDim.x) {
        request_output_ids[i] = output_ids[i];
    }

    *request_seqlen = seqlen;
}

void invokeUpdateOutput(int**        request_output_ids_ptrs,
                        int**        request_seqlen_ptrs,
                        const int*   output_ids,
                        const int*   sequence_lengths,
                        const int*   request_output_ids_lens,
                        int          max_session_len,
                        bool         token_generated,
                        int          batch_size,
                        cudaStream_t stream)
{
    constexpr int block_size = 128;
    const int     grid_size  = batch_size;

    updateOutput<<<grid_size, block_size, 0, stream>>>(request_output_ids_ptrs,
                                                       request_seqlen_ptrs,
                                                       output_ids,
                                                       sequence_lengths,
                                                       request_output_ids_lens,
                                                       max_session_len,
                                                       token_generated);
}

Li Zhang's avatar
Li Zhang committed
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
template<int BLOCK_DIM>
__global__ void compactOutputIds(
    int* cu_output_ids, const int* output_ids, const int* sequence_lengths, int session_len, bool token_generated)
{
    typedef cub::BlockReduce<int, BLOCK_DIM>     BlockReduce;
    __shared__ typename BlockReduce::TempStorage temp_storage;

    const int batch_idx = blockIdx.x;

    int end   = (batch_idx + BLOCK_DIM - 1) / BLOCK_DIM * BLOCK_DIM;  // align to BLOCK_DIM boundary
    int count = 0;
    for (int i = threadIdx.x; i < end; i += blockDim.x) {
        int x = threadIdx.x < batch_idx ? sequence_lengths[threadIdx.x] : 0;
        count += BlockReduce(temp_storage).Sum(x);
        // https://nvlabs.github.io/cub/classcub_1_1_block_reduce.html
        __syncthreads();
    }

    __shared__ int offset;

    if (threadIdx.x == 0) {
        offset = count;
    }

    __syncthreads();

    auto dst = cu_output_ids + offset;

    const int seq_len = sequence_lengths[batch_idx];

    for (int i = threadIdx.x; i < seq_len; i += blockDim.x) {
        dst[i] = output_ids[batch_idx * session_len + i];
    }
}

void invokeCompactOutputIds(int*         cu_output_ids,
                            const int*   output_ids,
                            const int*   sequence_lengths,
                            int          max_session_len,
                            bool         token_generated,
                            int          batch_size,
                            cudaStream_t stream)
{
    constexpr int BLOCK_DIM = 128;
    compactOutputIds<BLOCK_DIM><<<batch_size, BLOCK_DIM, 0, stream>>>(
        cu_output_ids, output_ids, sequence_lengths, max_session_len, token_generated);
}

template<int N, int C>
struct IndexedCopyParam {
    Array<void*, N> src_ptr;
    Array<void*, N> dst_ptr;
    Array<int, N>   stride;
    Array<int, C>   src_idx;
    Array<int, C>   dst_idx;
    int             max_stride;
};

template<class T, int N, int C>
__global__ void indexedCopy(IndexedCopyParam<N, C> param)
{
    const int bi = blockIdx.x;
    const int si = param.src_idx[bi];
    const int di = param.dst_idx[bi];
    for (int i = threadIdx.x; i < param.max_stride; i += blockDim.x) {
        PRAGMA_UNROLL
        for (int k = 0; k < N; ++k) {
            if (i < param.stride[k]) {
                *((T*)param.dst_ptr[k] + param.stride[k] * di + i) =
                    *((const T*)param.src_ptr[k] + param.stride[k] * si + i);
            }
        }
    }
}

template<class T, int N>
void invokeIndexedCopyImpl(void**       h_src_ptr,
                           void**       h_dst_ptr,
                           const int*   h_elem_sz,
                           const int*   h_src_idx,
                           const int*   h_dst_idx,
                           int          count,
                           cudaStream_t st)
{
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
    dispatch(  // dispatch for num of copy operations
        std::integer_sequence<int, 4, 8, 16, 32, 64, 128, 256>{},
        [&](auto C) { return count <= C; },
        [&](auto C) {
            // maximum parameter size: sm<70: 4kB, sm>=70: 32kB
            static_assert(sizeof(IndexedCopyParam<N, C>) <= 4096);
            IndexedCopyParam<N, C> param{};
            std::copy_n(h_src_ptr, N, param.src_ptr.data());
            std::copy_n(h_dst_ptr, N, param.dst_ptr.data());
            std::transform(h_elem_sz, h_elem_sz + N, param.stride.data(), [](int size) {
                // Basic alignment check
                FT_CHECK_WITH_INFO(size % sizeof(T) == 0, fmtstr("misalignment: %d %% %d", size, (int)sizeof(T)));
                return size / sizeof(T);
            });
            param.max_stride = *std::max_element(param.stride.begin(), param.stride.end());
            auto copy_idx    = [](const int* src, int offset, int n, auto dst) {
                return src ? (void)std::copy_n(src + offset, n, dst) : std::iota(dst, dst + n, offset);
            };
            for (int c = 0; c < count; c += C) {
                int batch_size = std::min(count - c, (int)C);
                copy_idx(h_src_idx, c, batch_size, param.src_idx.data());
                copy_idx(h_dst_idx, c, batch_size, param.dst_idx.data());
                indexedCopy<T><<<batch_size, 128, 0, st>>>(param);
            }
Li Zhang's avatar
Li Zhang committed
781
782
783
784
785
786
787
788
789
790
791
792
        });
}

void invokeIndexedCopy(void**       h_src_ptr,
                       void**       h_dst_ptr,
                       const int*   h_elem_sz,
                       const int*   h_src_idx,
                       const int*   h_dst_idx,
                       int          count,
                       int          n_copys,
                       cudaStream_t st)
{
793
794
795
796
797
798
799
800
    auto success = dispatch(std::integer_sequence<int, 1, 2, 3, 4>{}, [&](auto N) {
        if (N == n_copys) {
            invokeIndexedCopyImpl<uint32_t, N>(h_src_ptr, h_dst_ptr, h_elem_sz, h_src_idx, h_dst_idx, count, st);
            return true;
        }
        return false;
    });
    FT_CHECK(success);
Li Zhang's avatar
Li Zhang committed
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
}

__global__ void padLastTokenIds(int* token_ids, const int* context_length, int max_context_len, int batch_size)
{
    for (int bi = threadIdx.x; bi < batch_size; bi += blockDim.x) {
        token_ids[(max_context_len - 1) * batch_size + bi] = token_ids[(context_length[bi] - 1) * batch_size + bi];
    }
}

void invokePadLastTokenIds(
    int* token_ids, const int* context_length, int max_context_len, int batch_size, cudaStream_t stream)
{
    padLastTokenIds<<<1, 512, 0, stream>>>(token_ids, context_length, max_context_len, batch_size);
}

816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
template<typename T>
__global__ void getFeatureOfLastToken(T* output, const T* input, const int* cu_seqlens, int dims)
{
    int bi = blockIdx.x;
    int ti = cu_seqlens[bi + 1] - 1;
    for (int i = threadIdx.x; i < dims; i += blockDim.x) {
        output[dims * bi + i] = input[dims * ti + i];
    }
}

template<typename T>
void invokeGetFeatureOfLastToken(
    T* output, const T* input, const int* cu_seqlens, int dims, int batch_size, cudaStream_t stream)
{
    getFeatureOfLastToken<<<batch_size, 256, 0, stream>>>(output, input, cu_seqlens, dims);
}

template void invokeGetFeatureOfLastToken(half*, const half*, const int*, int, int, cudaStream_t);
template void invokeGetFeatureOfLastToken(float*, const float*, const int*, int, int, cudaStream_t);
q.yao's avatar
q.yao committed
835
836
837
#ifdef ENABLE_BF16
template void invokeGetFeatureOfLastToken(__nv_bfloat16*, const __nv_bfloat16*, const int*, int, int, cudaStream_t);
#endif  // ENABLE_BF16
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908

template<class T, int C>
struct BatchedCopyParam {
    Array<T*, C>  src_ptr;
    Array<T*, C>  dst_ptr;
    Array<int, C> size;
    int           count;
};

template<int kThrPerCpy, class T, int C>
__global__ void batchedCopy(BatchedCopyParam<T, C> param)
{
    const int ti = threadIdx.x + blockIdx.x * blockDim.x;
    const int bi = ti / kThrPerCpy;
    if (bi >= param.count) {
        return;
    }
    const T* __restrict__ src = param.src_ptr[bi];
    T* __restrict__ dst       = param.dst_ptr[bi];
    int size                  = param.size[bi];
    for (int i = ti % kThrPerCpy; i < size; i += kThrPerCpy) {
        dst[i] = src[i];
    }
}

// MSVC does not like CUDA kernel launch inside nested lambdas
template<class P>
struct BatchedCopyLauncher {
    int          max_size;
    int          count;
    const P*     params;
    cudaStream_t st;

    template<int S>
    void operator()(std::integral_constant<int, S>) const
    {
        constexpr int threads         = 128;
        constexpr int items_per_block = threads / S;
        const int     blocks          = (count + items_per_block - 1) / items_per_block;
        batchedCopy<S><<<blocks, threads, 0, st>>>(*params);
    }
};

void invokeBatchedCopy(void** src_ptr, void** dst_ptr, int* size, int count, cudaStream_t st)
{
    dispatch(
        std::integer_sequence<int, 1, 8, 32, 128>{},
        [&](auto C) { return count <= C; },
        [&](auto C) {
            using T = uint32_t;
            BatchedCopyParam<T, C> params{};
            // TODO: on CUDA 12.1 and sm_70+ this can be 32K
            static_assert(sizeof(params) <= 4096);
            for (int c = 0; c < count; c += C) {
                const int bsz = std::min<int>(count - c, C);
                params.count  = bsz;
                for (int i = 0; i < bsz; ++i) {
                    params.src_ptr[i] = (T*)src_ptr[c + i];
                    params.dst_ptr[i] = (T*)dst_ptr[c + i];
                    FT_CHECK(size[c + i] % sizeof(T) == 0);
                    params.size[i] = size[c + i] / sizeof(T);
                }
                const int max_size = *std::max_element(params.size.begin(), params.size.end());
                dispatch(
                    std::integer_sequence<int, 1, 2, 4, 8, 16, 32, 64, 128>{},
                    [&](auto S) { return max_size <= S; },
                    BatchedCopyLauncher<BatchedCopyParam<T, C>>{max_size, count, &params, st});
            }
        });
}

q.yao's avatar
q.yao committed
909
910
911
912
913
914
915
916
917
918
919
920
#define VERSION_SWITCH(VERSION, CONST_NAME, ...)                                                                       \
    [&] {                                                                                                              \
        if (VERSION == 2) {                                                                                            \
            constexpr static int CONST_NAME = 2;                                                                       \
            return __VA_ARGS__();                                                                                      \
        }                                                                                                              \
        else {                                                                                                         \
            constexpr static int CONST_NAME = 1;                                                                       \
            return __VA_ARGS__();                                                                                      \
        }                                                                                                              \
    }()

xiabo's avatar
xiabo committed
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
// template<typename T>
// FlashAttentionOp<T>::FlashAttentionOp(int batch_size, int head_num, int key_len, int seq_len, int size_per_head):
//     batch_size_(batch_size), head_num_(head_num), key_len_(key_len), seq_len_(seq_len), size_per_head_(size_per_head)
// {
// #ifdef _MSC_VER
//     op_version_ = 1;
// #else
//     op_version_ = std::is_same<float, typename std::decay<T>::type>::value ? 1 : 2;
//     if (op_version_ == 2 && getSMVersion() < 80) {
//         op_version_ = 1;
//     }
// #endif
// }

// template<typename T>
// int FlashAttentionOp<T>::get_workspace_size() const
// {
// #ifdef _MSC_VER
//     FlashAttentionOpImpl<T, 1> attention_op(batch_size_, head_num_, key_len_, seq_len_, size_per_head_);
//     return attention_op.get_workspace_size();
// #else
//     return VERSION_SWITCH(op_version_, OP_VERSION, [&]() {
//         FlashAttentionOpImpl<T, OP_VERSION> attention_op(batch_size_, head_num_, key_len_, seq_len_, size_per_head_);
//         return attention_op.get_workspace_size();
//     });
// #endif
// }

// template<typename T>
// void FlashAttentionOp<T>::operator()(Params& params, cudaStream_t st) const
// {
// #ifdef _MSC_VER
//     FlashAttentionOpImpl<T, 1> attention_op(batch_size_, head_num_, key_len_, seq_len_, size_per_head_);
//     return attention_op(params, st);
// #else
//     return VERSION_SWITCH(op_version_, OP_VERSION, [&]() {
//         FlashAttentionOpImpl<T, OP_VERSION> attention_op(batch_size_, head_num_, key_len_, seq_len_, size_per_head_);
//         return attention_op(params, st);
//     });
// #endif
// }
q.yao's avatar
q.yao committed
962

xiabo's avatar
xiabo committed
963
964
// template class FlashAttentionOp<float>;
// template class FlashAttentionOp<half>;
965
966
967
// #ifdef ENABLE_BF16
// template class FlashAttentionOp<__nv_bfloat16>;
// #endif
q.yao's avatar
q.yao committed
968

lvhan028's avatar
lvhan028 committed
969
}  // namespace turbomind