llama_kernels.cu 32.3 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
// Copyright (c) OpenMMLab. All rights reserved.

lvhan028's avatar
lvhan028 committed
3
#include "src/turbomind/kernels/decoder_masked_multihead_attention_utils.h"
Li Zhang's avatar
Li Zhang committed
4
5
#include "src/turbomind/kernels/decoder_multihead_attention/array_ops.h"
#include "src/turbomind/kernels/gemm_s_f16/common.h"
lvhan028's avatar
lvhan028 committed
6
#include "src/turbomind/kernels/reduce_kernel_utils.cuh"
Chen Xin's avatar
Chen Xin committed
7
#include "src/turbomind/macro.h"
lvhan028's avatar
lvhan028 committed
8
9
10
#include "src/turbomind/models/llama/llama_kernels.h"
#include "src/turbomind/models/llama/llama_utils.h"
#include "src/turbomind/utils/cuda_type_utils.cuh"
Li Zhang's avatar
Li Zhang committed
11
#include "src/turbomind/utils/cuda_utils.h"
Li Zhang's avatar
Li Zhang committed
12
#include "src/turbomind/utils/logger.h"
Li Zhang's avatar
Li Zhang committed
13
14
15
#include <algorithm>
#include <cstdint>
#include <cub/block/block_reduce.cuh>
Li Zhang's avatar
Li Zhang committed
16
#include <type_traits>
Li Zhang's avatar
Li Zhang committed
17

lvhan028's avatar
lvhan028 committed
18
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

// fp16, bf16
// n is divided by 2 for this impl
template<typename T>
__global__ void rootMeanSquareNorm(T* out, const T* input, const T* scale, float eps, int m, int n)
{
    using T2 = typename TypeConverter<T>::Type;
    __shared__ float s_inv_mean;
    float            mean = 0.f;

    T2*       out_ptr   = (T2*)out;
    const T2* input_ptr = (const T2*)input;
    const T2* scale_ptr = (const T2*)scale;

    for (uint idx = threadIdx.x; idx < n; idx += blockDim.x) {
        float2 tmp2 = cuda_cast<float2>(input_ptr[blockIdx.x * n + idx]);
        mean += tmp2.x * tmp2.x;
        mean += tmp2.y * tmp2.y;
    }

    mean = blockReduceSum<float>(mean);
    if (threadIdx.x == 0) {
        s_inv_mean = rsqrt(.5f * mean / (float)n + eps);
    }
    __syncthreads();

    for (uint idx = threadIdx.x; idx < n; idx += blockDim.x) {
        float2 tmp2                   = cuda_cast<float2>(input_ptr[blockIdx.x * n + idx]);
        float2 sca2                   = cuda_cast<float2>(scale_ptr[idx]);
        tmp2.x                        = tmp2.x * s_inv_mean * sca2.x;
        tmp2.y                        = tmp2.y * s_inv_mean * sca2.y;
        out_ptr[blockIdx.x * n + idx] = cuda_cast<T2>(tmp2);
    }
}

template<>
__global__ void rootMeanSquareNorm(float* out, const float* input, const float* scale, float eps, int m, int n)
{
    __shared__ float s_inv_mean;
    float            mean = 0.f;

    for (uint idx = threadIdx.x; idx < n; idx += blockDim.x) {
        float tmp = input[blockIdx.x * n + idx];
        mean += tmp * tmp;
    }

    mean = blockReduceSum<float>(mean);
    if (threadIdx.x == 0) {
        s_inv_mean = rsqrt(mean / static_cast<float>(n) + eps);
    }
    __syncthreads();

    for (uint idx = threadIdx.x; idx < n; idx += blockDim.x) {
        float tmp                 = input[blockIdx.x * n + idx];
        out[blockIdx.x * n + idx] = tmp * s_inv_mean * scale[idx];
    }
}

template<typename T>
void invokeRootMeanSquareNorm(T* out, const T* input, const T* scale, float eps, int m, int n, cudaStream_t stream)
{
    if (sizeof(T) == 2) {
        FT_CHECK(n % 2 == 0);
        n /= 2;
    }
    dim3 grid(m);
    dim3 block(std::min(n, 1024));
    rootMeanSquareNorm<<<grid, block, 0, stream>>>(out, input, scale, eps, m, n);
}

template void invokeRootMeanSquareNorm(float*, const float*, const float*, float, int, int, cudaStream_t);
template void invokeRootMeanSquareNorm(half*, const half*, const half*, float, int, int, cudaStream_t);

// #ifdef ENABLE_BF16

// template void invokeRootMeanSquareNorm(__nv_bfloat16*, const __nv_bfloat16*, float, int, int, cudaStream_t);

// #endif

template<typename T, typename T0>
__device__ T saturate_cast(T0 x)
{
    return x;
}

template<>
__device__ half saturate_cast<half, float>(float x)
{
    return (x > 64512.f || x < -64512.f) ? (x > 0.f ? 64512.f : -64512.f) : x;
}

template<typename T>
__global__ void addResidual(T* out, const T* in, size_t n)
{
    auto idx = threadIdx.x + (size_t)blockIdx.x * blockDim.x;
    if (idx < n) {
        out[idx] = static_cast<T>(static_cast<float>(out[idx]) + static_cast<float>(in[idx]));
    }
}

template<typename T>
void invokeAddResidual(T* out, const T* in, int m, int n, cudaStream_t stream)
{
    auto total = static_cast<size_t>(m) * n;
Chen Xin's avatar
Chen Xin committed
123
    dim3 block(std::min((unsigned long)total, 1024UL));
Li Zhang's avatar
Li Zhang committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    dim3 grid((total + block.x - 1) / block.x);

    addResidual<<<grid, block, 0, stream>>>(out, in, total);
}

template void invokeAddResidual(float*, const float*, int, int, cudaStream_t);
template void invokeAddResidual(half*, const half*, int, int, cudaStream_t);

// ids [seq_len, batch_size]
// input_ids [batch_size, max_input_len]
__global__ void
fixInputIds(int* ids, const int* input_ids, const int* input_lengths, int batch_size, int seq_len, int max_input_len)
{
    int seq_id   = threadIdx.x;
    int batch_id = blockIdx.x;
    for (; seq_id < input_lengths[batch_id]; seq_id += blockDim.x) {
        ids[seq_id * batch_size + batch_id] = input_ids[batch_id * max_input_len + seq_id];
    }
}

void invokeFixInputIds(int*         ids,
                       const int*   input_ids,
                       const int*   input_lengths,
                       int          batch_size,
                       int          seq_len,
                       int          max_input_len,
                       cudaStream_t st)
{
    dim3 block(std::min(1024, max_input_len));
    dim3 grid(batch_size);
    fixInputIds<<<grid, block, 0, st>>>(ids, input_ids, input_lengths, batch_size, seq_len, max_input_len);
}

template<typename T>
__global__ void sliceCausalMask(T* mask, int seq_len, int key_len, int step)
{
    mask += (size_t)blockIdx.x * seq_len * key_len;
    for (int i = threadIdx.x; i < seq_len * key_len; i += blockDim.x) {
        int row = i / key_len;
        int col = i % key_len;
        if (col <= row + step) {
            mask[i] = static_cast<T>(1.f);
        }
        else {
            mask[i] = static_cast<T>(0.f);
        }
    }
}

// [step: step+Q, :] of the K*K causal mask
template<typename T>
void invokeSliceCausalMask(T* mask, int seq_len, int key_len, int step, int batch_size, cudaStream_t stream)
{
    FT_CHECK(step == key_len - seq_len);
    sliceCausalMask<<<batch_size, 256, 0, stream>>>(mask, seq_len, key_len, step);
}

template void invokeSliceCausalMask(half*, int, int, int, int, cudaStream_t);
template void invokeSliceCausalMask(float*, int, int, int, int, cudaStream_t);

// mask [bsz, max_q_len, max_k_len]

template<typename T>
__global__ void createCausalMasks(T* mask, const int* q_lens, const int* k_lens, int max_q_len, int max_k_len)
{
    const auto q_len = q_lens[blockIdx.x];
    const auto k_len = k_lens[blockIdx.x];
    mask += blockIdx.x * max_q_len * max_k_len;
    for (int i = threadIdx.x; i < max_q_len * max_k_len; i += blockDim.x) {
        const int q        = i / max_k_len;  // [0, max_q_len)
        const int k        = i % max_k_len;  // [0, max_k_len)
        bool      is_valid = q < q_len && k < k_len && k <= q + (k_len - q_len);
        mask[i]            = static_cast<T>(is_valid);
    }
}

template<typename T>
void invokeCreateCausalMasks(
    T* mask, const int* q_lens, const int* k_lens, int max_q_len, int max_k_len, int batch_size, cudaStream_t stream)
{
    createCausalMasks<<<batch_size, 512, 0, stream>>>(mask, q_lens, k_lens, max_q_len, max_k_len);
}

template void invokeCreateCausalMasks(float* mask, const int*, const int*, int, int, int, cudaStream_t);
template void invokeCreateCausalMasks(half* mask, const int*, const int*, int, int, int, cudaStream_t);

Li Zhang's avatar
Li Zhang committed
210
211
template<typename Ti, typename To>
struct ExtendKvCache {
Li Zhang's avatar
Li Zhang committed
212

Li Zhang's avatar
Li Zhang committed
213
214
    static constexpr int MaxElemSize = std::max(sizeof(Ti), sizeof(To));
    static constexpr int X_ELEMS     = 16 / MaxElemSize;
Li Zhang's avatar
Li Zhang committed
215

Li Zhang's avatar
Li Zhang committed
216
217
    using Vi = Array<Ti, X_ELEMS>;
    using Vo = Array<To, X_ELEMS>;
Li Zhang's avatar
Li Zhang committed
218

Li Zhang's avatar
Li Zhang committed
219
    using Transform = ConvertKvCache<Ti, To>;
Li Zhang's avatar
Li Zhang committed
220

Li Zhang's avatar
Li Zhang committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    struct Params {
        To**       k_dst_ptrs;
        To**       v_dst_ptrs;
        const Ti*  k_src;
        const Ti*  v_src;
        const int* cu_block_counts;
        const int* query_length;
        const int* context_length;
        int        block_length;
        size_t     dst_layer_offset;
        int        max_q_len;
        int        head_num;
        int        head_dim;
        Transform  transform_k;
        Transform  transform_v;
    };
Li Zhang's avatar
Li Zhang committed
237

Li Zhang's avatar
Li Zhang committed
238
239
240
    __device__ void operator()(const Params& params) const
    {
        const int batch_id = blockIdx.y;
Li Zhang's avatar
Li Zhang committed
241

Li Zhang's avatar
Li Zhang committed
242
243
244
        const int query_len    = params.query_length[batch_id];
        const int history_len  = params.context_length[batch_id] - query_len;
        const int cu_block_cnt = params.cu_block_counts[batch_id];
Li Zhang's avatar
Li Zhang committed
245

Li Zhang's avatar
Li Zhang committed
246
        const int head_id = blockIdx.z;
Li Zhang's avatar
Li Zhang committed
247

Li Zhang's avatar
Li Zhang committed
248
249
250
251
        const int size_per_head_div_x = params.head_dim / X_ELEMS;
        const int idx                 = blockIdx.x * blockDim.x + threadIdx.x;
        const int head_size_id        = idx % size_per_head_div_x;
        const int seq_len_id          = idx / size_per_head_div_x;
Li Zhang's avatar
Li Zhang committed
252

Li Zhang's avatar
Li Zhang committed
253
254
        const int cache_block_index  = (seq_len_id + history_len) / params.block_length;
        const int cache_block_offset = (seq_len_id + history_len) % params.block_length;
Li Zhang's avatar
Li Zhang committed
255

Li Zhang's avatar
Li Zhang committed
256
257
        const auto k_val_src = params.k_src;
        const auto v_val_src = params.v_src;
Li Zhang's avatar
Li Zhang committed
258

Li Zhang's avatar
Li Zhang committed
259
260
        const auto k_val_dst = (params.k_dst_ptrs + cu_block_cnt)[cache_block_index] + params.dst_layer_offset;
        const auto v_val_dst = (params.v_dst_ptrs + cu_block_cnt)[cache_block_index] + params.dst_layer_offset;
Li Zhang's avatar
Li Zhang committed
261

Li Zhang's avatar
Li Zhang committed
262
263
264
265
266
        if (seq_len_id < query_len) {
            // [B, H, s, D/x] -> [H, S[t:t+s], D/x]
            const int64_t dst_idx = head_id * params.block_length * size_per_head_div_x +  // H
                                    cache_block_offset * size_per_head_div_x +             // s + offset
                                    head_size_id;                                          // D/x
Li Zhang's avatar
Li Zhang committed
267

Li Zhang's avatar
Li Zhang committed
268
269
270
271
            const int64_t src_idx = batch_id * params.head_num * params.max_q_len * size_per_head_div_x +  // B
                                    head_id * params.max_q_len * size_per_head_div_x +                     // H
                                    seq_len_id * size_per_head_div_x +                                     // s
                                    head_size_id;                                                          // D/x
Li Zhang's avatar
Li Zhang committed
272

Li Zhang's avatar
Li Zhang committed
273
274
            Vi k_vi;
            Vi v_vi;
Li Zhang's avatar
Li Zhang committed
275

Li Zhang's avatar
Li Zhang committed
276
277
            Ldg(k_vi, k_val_src + src_idx * X_ELEMS);
            Ldg(v_vi, v_val_src + src_idx * X_ELEMS);
Li Zhang's avatar
Li Zhang committed
278

Li Zhang's avatar
Li Zhang committed
279
280
            Vo k_vo = params.transform_k(k_vi);
            Vo v_vo = params.transform_v(v_vi);
Li Zhang's avatar
Li Zhang committed
281

Li Zhang's avatar
Li Zhang committed
282
283
284
285
286
            Store(k_val_dst + dst_idx * X_ELEMS, k_vo);
            Store(v_val_dst + dst_idx * X_ELEMS, v_vo);
        }
    }
};
287

Li Zhang's avatar
Li Zhang committed
288
namespace {
289

Li Zhang's avatar
Li Zhang committed
290
291
template<class Kernel, class Params>
__global__ void KernelWrapper(Params params)
AllentDan's avatar
AllentDan committed
292
{
Li Zhang's avatar
Li Zhang committed
293
294
    Kernel{}(params);
};
295

Li Zhang's avatar
Li Zhang committed
296
}  // namespace
297
298

template<typename T>
Li Zhang's avatar
Li Zhang committed
299
300
void invokeExtendKVCache(void**       k_dst_ptrs,
                         void**       v_dst_ptrs,
Li Zhang's avatar
Li Zhang committed
301
302
                         const T*     k_src,
                         const T*     v_src,
Li Zhang's avatar
Li Zhang committed
303
                         const int*   cu_block_counts,
Li Zhang's avatar
Li Zhang committed
304
                         const int*   query_length,
Li Zhang's avatar
Li Zhang committed
305
306
307
308
                         const int*   context_length,
                         int          batch_size,
                         int          block_length,
                         size_t       dst_layer_offset,
Li Zhang's avatar
Li Zhang committed
309
                         int          max_q_len,
Li Zhang's avatar
Li Zhang committed
310
311
                         int          head_dim,
                         int          head_num,
312
                         int          quant,
Li Zhang's avatar
Li Zhang committed
313
314
                         const float* kv_params,
                         cudaStream_t stream)
Li Zhang's avatar
Li Zhang committed
315
316
317
{
    constexpr int block_sz = 128;

Li Zhang's avatar
Li Zhang committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    auto fn = [&](auto value) {
        using Tout   = decltype(value);
        using Kernel = ExtendKvCache<T, Tout>;

        dim3 grid((max_q_len * head_dim / Kernel::X_ELEMS + block_sz - 1) / block_sz, batch_size, head_num);

        typename Kernel::Params params{(Tout**)k_dst_ptrs,
                                       (Tout**)v_dst_ptrs,
                                       k_src,
                                       v_src,
                                       cu_block_counts,
                                       query_length,
                                       context_length,
                                       block_length,
                                       dst_layer_offset,
                                       max_q_len,
                                       head_num,
                                       head_dim,
                                       {kv_params[0], kv_params[1]},
                                       {kv_params[2], kv_params[3]}};

        KernelWrapper<Kernel><<<grid, block_sz, 0, stream>>>(params);
    };

    (quant & QuantPolicy::kCacheKVInt8) ? fn(int8_t{}) : fn(T{});
Li Zhang's avatar
Li Zhang committed
343
344
}

Li Zhang's avatar
Li Zhang committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
template void invokeExtendKVCache(void**       k_dst_ptrs,
                                  void**       v_dst_ptrs,
                                  const float* k_src,
                                  const float* v_src,
                                  const int*   cu_block_counts,
                                  const int*   query_length,
                                  const int*   history_length,
                                  int          batch_size,
                                  int          block_length,
                                  size_t       dst_layer_offset,
                                  int          max_q_len,
                                  int          head_dim,
                                  int          head_num,
                                  int          quant,
                                  const float* kv_scale,
                                  cudaStream_t stream);

template void invokeExtendKVCache(void**       k_dst_ptrs,
                                  void**       v_dst_ptrs,
                                  const half*  k_src,
                                  const half*  v_src,
                                  const int*   cu_block_counts,
                                  const int*   query_length,
                                  const int*   history_length,
                                  int          batch_size,
                                  int          block_length,
                                  size_t       dst_layer_offset,
                                  int          max_q_len,
                                  int          head_dim,
                                  int          head_num,
                                  int          quant,
                                  const float* kv_scale,
                                  cudaStream_t stream);

template<typename Ti, typename To>
struct TransposeKvCache {
    static constexpr int MaxElemSize = std::max(sizeof(Ti), sizeof(To));
    static constexpr int X_ELEMS     = 16 / MaxElemSize;

    using Vi = Array<Ti, X_ELEMS>;
    using Vo = Array<To, X_ELEMS>;

    using Transform = ConvertKvCache<Ti, To>;

    struct Params {
        To*        k_dst;
        To*        v_dst;
        const Ti** k_src;
        const Ti** v_src;
        size_t     src_offset;
        int        head_num;
        int        head_n_rep;
        int        size_per_head;
        const int* seq_length;
        int        max_kv_len;
        int        max_seq_len;
        Transform  transform_k;
        Transform  transform_v;
        // float      k_scale;
        // float      k_zp;
        // float      v_scale;
        // float      v_zp;
    };

    __device__ void operator()(const Params& params) const
    {
        const int batch_id = blockIdx.y;
        const int head_id  = blockIdx.z;

        const int idx                 = blockIdx.x * blockDim.x + threadIdx.x;
        const int size_per_head_div_x = params.size_per_head / X_ELEMS;

        const auto k_src = params.k_src[batch_id] + params.src_offset;
        const auto v_src = params.v_src[batch_id] + params.src_offset;
        const auto k_dst = params.k_dst;
        const auto v_dst = params.v_dst;

        const auto seq_len = params.seq_length[batch_id];

        const int v_head_size_id = idx % size_per_head_div_x;
        const int v_seq_len_id   = idx / size_per_head_div_x;

        if (v_seq_len_id < seq_len) {
            // [B, H, s, D/x] <- [B, H, S[:s], D/x]
            const int64_t src_idx = head_id / params.head_n_rep * size_per_head_div_x * params.max_seq_len +  // H
                                    v_seq_len_id * size_per_head_div_x +                                      // s
                                    v_head_size_id;                                                           // D/x

            const int64_t dst_idx = batch_id * params.head_num * size_per_head_div_x * params.max_kv_len +  // B
                                    head_id * size_per_head_div_x * params.max_kv_len +                     // H
                                    v_seq_len_id * size_per_head_div_x +                                    // s
                                    v_head_size_id;                                                         // D/x

            Vi k_vi;
            Vi v_vi;

            Ldg(k_vi, k_src + src_idx * X_ELEMS);
            Ldg(v_vi, v_src + src_idx * X_ELEMS);

            Vo k_vo = params.transform_k(k_vi);
            Vo v_vo = params.transform_v(v_vi);

            Store(k_dst + dst_idx * X_ELEMS, k_vo);
            Store(v_dst + dst_idx * X_ELEMS, v_vo);
        }
Li Zhang's avatar
Li Zhang committed
450
    }
Li Zhang's avatar
Li Zhang committed
451
};
Li Zhang's avatar
Li Zhang committed
452
453
454
455
456
457
458
459
460
461
462
463
464

template<typename T>
void invokeTransposeKVCache(T*           key_cache_trans,
                            T*           val_cache_trans,
                            const T**    key_cache,
                            const T**    val_cache,
                            size_t       src_offset,
                            int          batch_size,
                            const int*   key_length,
                            int          max_kv_len,
                            int          max_seq_len,
                            int          size_per_head,
                            int          head_num,
465
                            int          head_n_rep,
466
467
                            cudaStream_t stream,
                            int          quant,
Li Zhang's avatar
Li Zhang committed
468
                            const float* kv_params)
Li Zhang's avatar
Li Zhang committed
469
470
{
    constexpr int block_sz = 128;
Li Zhang's avatar
Li Zhang committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

    auto fn = [&](auto value) {
        using Tin    = decltype(value);
        using Kernel = TransposeKvCache<Tin, T>;

        dim3 grid((max_kv_len * size_per_head / Kernel::X_ELEMS + block_sz - 1) / block_sz, batch_size, head_num);

        typename Kernel::Params params{key_cache_trans,
                                       val_cache_trans,
                                       (const Tin**)key_cache,
                                       (const Tin**)val_cache,
                                       src_offset,
                                       head_num,
                                       head_n_rep,
                                       size_per_head,
                                       key_length,
                                       max_kv_len,
                                       max_seq_len,
                                       {kv_params[0], kv_params[1]},
                                       {kv_params[2], kv_params[3]}};

        KernelWrapper<Kernel><<<grid, block_sz, 0, stream>>>(params);
    };

    (quant & QuantPolicy::kCacheKVInt8) ? fn(int8_t{}) : fn(T{});
Li Zhang's avatar
Li Zhang committed
496
497
}

AllentDan's avatar
AllentDan committed
498
499
500
501
502
503
504
505
506
507
508
template void invokeTransposeKVCache(float*,
                                     float*,
                                     const float**,
                                     const float**,
                                     size_t,
                                     int,
                                     const int*,
                                     int,
                                     int,
                                     int,
                                     int,
509
                                     int,
AllentDan's avatar
AllentDan committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
                                     cudaStream_t stream,
                                     int,
                                     const float*);
template void invokeTransposeKVCache(half*,
                                     half*,
                                     const half**,
                                     const half**,
                                     size_t,
                                     int,
                                     const int*,
                                     int,
                                     int,
                                     int,
                                     int,
524
                                     int,
AllentDan's avatar
AllentDan committed
525
526
527
                                     cudaStream_t stream,
                                     int,
                                     const float*);
Li Zhang's avatar
Li Zhang committed
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

__global__ void gatherOutput(int*       output_ids,
                             const int* ids,
                             const int* context_length,
                             int        max_context_len,
                             int        max_gen_step,
                             int        max_output_len,
                             int        batch_size)
{
    const int batch_id    = blockIdx.x;
    const int context_len = context_length[batch_id];
    output_ids += batch_id * max_output_len;
    for (int src_idx = threadIdx.x; src_idx < max_gen_step; src_idx += blockDim.x) {
        // skip padding for src
        if (context_len <= src_idx && src_idx < max_context_len) {
            continue;
        }
        // skip padding for dst
        const int dst_idx   = src_idx < context_len ? src_idx : src_idx - (max_context_len - context_len);
        output_ids[dst_idx] = ids[src_idx * batch_size + batch_id];
    }
}

void invokeGatherOutput(int*         output_ids,
                        const int*   ids,
                        const int*   context_length,
                        int          max_context_len,
                        int          max_gen_step,
                        int          max_output_len,
                        int          batch_size,
                        cudaStream_t stream)
{
Li Zhang's avatar
Li Zhang committed
560
    int block_size = 128;
Li Zhang's avatar
Li Zhang committed
561
562
563
564
565
    int grid_size  = batch_size;
    gatherOutput<<<grid_size, block_size, 0, stream>>>(
        output_ids, ids, context_length, max_context_len, max_gen_step, max_output_len, batch_size);
}

Li Zhang's avatar
Li Zhang committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
__global__ void updateOutput(int**      request_output_ids_ptrs,
                             int**      request_seqlen_ptrs,
                             const int* output_ids,
                             const int* sequence_lengths,
                             const int* request_output_ids_lens,
                             int        max_session_len,
                             bool       token_generated)
{
    const int batch_id = blockIdx.x;

    auto request_output_ids = request_output_ids_ptrs[batch_id];
    auto request_seqlen     = request_seqlen_ptrs[batch_id];

    output_ids += max_session_len * batch_id;

    const int seqlen     = sequence_lengths[batch_id] + (int)token_generated;
    const int output_len = min(seqlen, request_output_ids_lens[batch_id]);

    for (int i = threadIdx.x; i < output_len; i += blockDim.x) {
        request_output_ids[i] = output_ids[i];
    }

    *request_seqlen = seqlen;
}

void invokeUpdateOutput(int**        request_output_ids_ptrs,
                        int**        request_seqlen_ptrs,
                        const int*   output_ids,
                        const int*   sequence_lengths,
                        const int*   request_output_ids_lens,
                        int          max_session_len,
                        bool         token_generated,
                        int          batch_size,
                        cudaStream_t stream)
{
    constexpr int block_size = 128;
    const int     grid_size  = batch_size;

    updateOutput<<<grid_size, block_size, 0, stream>>>(request_output_ids_ptrs,
                                                       request_seqlen_ptrs,
                                                       output_ids,
                                                       sequence_lengths,
                                                       request_output_ids_lens,
                                                       max_session_len,
                                                       token_generated);
}

Li Zhang's avatar
Li Zhang committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
template<int BLOCK_DIM>
__global__ void compactOutputIds(
    int* cu_output_ids, const int* output_ids, const int* sequence_lengths, int session_len, bool token_generated)
{
    typedef cub::BlockReduce<int, BLOCK_DIM>     BlockReduce;
    __shared__ typename BlockReduce::TempStorage temp_storage;

    const int batch_idx = blockIdx.x;

    int end   = (batch_idx + BLOCK_DIM - 1) / BLOCK_DIM * BLOCK_DIM;  // align to BLOCK_DIM boundary
    int count = 0;
    for (int i = threadIdx.x; i < end; i += blockDim.x) {
        int x = threadIdx.x < batch_idx ? sequence_lengths[threadIdx.x] : 0;
        count += BlockReduce(temp_storage).Sum(x);
        // https://nvlabs.github.io/cub/classcub_1_1_block_reduce.html
        __syncthreads();
    }

    __shared__ int offset;

    if (threadIdx.x == 0) {
        offset = count;
    }

    __syncthreads();

    auto dst = cu_output_ids + offset;

    const int seq_len = sequence_lengths[batch_idx];

    for (int i = threadIdx.x; i < seq_len; i += blockDim.x) {
        dst[i] = output_ids[batch_idx * session_len + i];
    }
}

void invokeCompactOutputIds(int*         cu_output_ids,
                            const int*   output_ids,
                            const int*   sequence_lengths,
                            int          max_session_len,
                            bool         token_generated,
                            int          batch_size,
                            cudaStream_t stream)
{
    constexpr int BLOCK_DIM = 128;
    compactOutputIds<BLOCK_DIM><<<batch_size, BLOCK_DIM, 0, stream>>>(
        cu_output_ids, output_ids, sequence_lengths, max_session_len, token_generated);
}

template<int N, int C>
struct IndexedCopyParam {
    Array<void*, N> src_ptr;
    Array<void*, N> dst_ptr;
    Array<int, N>   stride;
    Array<int, C>   src_idx;
    Array<int, C>   dst_idx;
    int             max_stride;
};

template<class T, int N, int C>
__global__ void indexedCopy(IndexedCopyParam<N, C> param)
{
    const int bi = blockIdx.x;
    const int si = param.src_idx[bi];
    const int di = param.dst_idx[bi];
    for (int i = threadIdx.x; i < param.max_stride; i += blockDim.x) {
        PRAGMA_UNROLL
        for (int k = 0; k < N; ++k) {
            if (i < param.stride[k]) {
                *((T*)param.dst_ptr[k] + param.stride[k] * di + i) =
                    *((const T*)param.src_ptr[k] + param.stride[k] * si + i);
            }
        }
    }
}

template<class T, int N>
void invokeIndexedCopyImpl(void**       h_src_ptr,
                           void**       h_dst_ptr,
                           const int*   h_elem_sz,
                           const int*   h_src_idx,
                           const int*   h_dst_idx,
                           int          count,
                           cudaStream_t st)
{
    auto invoke = [&](auto max_count) {
        constexpr int C = decltype(max_count)::value;
        // maximum parameter size: sm<70: 4kB, sm>=70: 32kB
        static_assert(sizeof(IndexedCopyParam<N, C>) <= 4096);
        IndexedCopyParam<N, C> param{};
        std::copy_n(h_src_ptr, N, param.src_ptr.data());
        std::copy_n(h_dst_ptr, N, param.dst_ptr.data());
        std::transform(h_elem_sz, h_elem_sz + N, param.stride.data(), [](int size) {
            // Basic alignment check
            FT_CHECK_WITH_INFO(size % sizeof(T) == 0, fmtstr("misalignment: %d %% %d", size, (int)sizeof(T)));
            return size / sizeof(T);
        });
        param.max_stride = *std::max_element(param.stride.begin(), param.stride.end());
        auto copy_idx    = [](const int* src, int offset, int n, auto dst) {
            return src ? (void)std::copy_n(src + offset, n, dst) : std::iota(dst, dst + n, offset);
        };
        for (int c = 0; c < count; c += C) {
            int batch_size = std::min(count - c, C);
            copy_idx(h_src_idx, c, batch_size, param.src_idx.data());
            copy_idx(h_dst_idx, c, batch_size, param.dst_idx.data());
            indexedCopy<T><<<batch_size, 128, 0, st>>>(param);
        }
    };
    if (count <= 4) {
        invoke(std::integral_constant<int, 4>{});
    }
    if (count <= 8) {
        invoke(std::integral_constant<int, 8>{});
    }
    else if (count <= 16) {
        invoke(std::integral_constant<int, 16>{});
    }
    else if (count <= 32) {
        invoke(std::integral_constant<int, 32>{});
    }
    else if (count <= 64) {
        invoke(std::integral_constant<int, 64>{});
    }
    else if (count <= 128) {
        invoke(std::integral_constant<int, 128>{});
    }
    else {
        invoke(std::integral_constant<int, 256>{});
    }
}

void invokeIndexedCopy(void**       h_src_ptr,
                       void**       h_dst_ptr,
                       const int*   h_elem_sz,
                       const int*   h_src_idx,
                       const int*   h_dst_idx,
                       int          count,
                       int          n_copys,
                       cudaStream_t st)
{
    auto args = std::tuple{h_src_ptr, h_dst_ptr, h_elem_sz, h_src_idx, h_dst_idx, count, st};
    switch (n_copys) {
        case 1:
            return std::apply(invokeIndexedCopyImpl<uint32_t, 1>, args);
        case 2:
            return std::apply(invokeIndexedCopyImpl<uint32_t, 2>, args);
        case 3:
            return std::apply(invokeIndexedCopyImpl<uint32_t, 3>, args);
        case 4:
            return std::apply(invokeIndexedCopyImpl<uint32_t, 4>, args);
        default:
            FT_CHECK(0);
    }
}

__global__ void padLastTokenIds(int* token_ids, const int* context_length, int max_context_len, int batch_size)
{
    for (int bi = threadIdx.x; bi < batch_size; bi += blockDim.x) {
        token_ids[(max_context_len - 1) * batch_size + bi] = token_ids[(context_length[bi] - 1) * batch_size + bi];
    }
}

void invokePadLastTokenIds(
    int* token_ids, const int* context_length, int max_context_len, int batch_size, cudaStream_t stream)
{
    padLastTokenIds<<<1, 512, 0, stream>>>(token_ids, context_length, max_context_len, batch_size);
}

q.yao's avatar
q.yao committed
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
#define VERSION_SWITCH(VERSION, CONST_NAME, ...)                                                                       \
    [&] {                                                                                                              \
        if (VERSION == 2) {                                                                                            \
            constexpr static int CONST_NAME = 2;                                                                       \
            return __VA_ARGS__();                                                                                      \
        }                                                                                                              \
        else {                                                                                                         \
            constexpr static int CONST_NAME = 1;                                                                       \
            return __VA_ARGS__();                                                                                      \
        }                                                                                                              \
    }()

template<typename T>
FlashAttentionOp<T>::FlashAttentionOp(int batch_size, int head_num, int key_len, int seq_len, int size_per_head):
    batch_size_(batch_size), head_num_(head_num), key_len_(key_len), seq_len_(seq_len), size_per_head_(size_per_head)
{
#ifdef _MSC_VER
    op_version_ = 1;
#else
    op_version_ = std::is_same<half, typename std::decay<T>::type>::value ? 2 : 1;
    if (op_version_ == 2 && getSMVersion() < 80) {
        op_version_ = 1;
    }
#endif
}

template<typename T>
int FlashAttentionOp<T>::get_workspace_size() const
{
#ifdef _MSC_VER
    FlashAttentionOpImpl<T, 1> attention_op(batch_size_, head_num_, key_len_, seq_len_, size_per_head_);
    return attention_op.get_workspace_size();
#else
    return VERSION_SWITCH(op_version_, OP_VERSION, [&]() {
        FlashAttentionOpImpl<T, OP_VERSION> attention_op(batch_size_, head_num_, key_len_, seq_len_, size_per_head_);
        return attention_op.get_workspace_size();
    });
#endif
}

template<typename T>
void FlashAttentionOp<T>::operator()(Params& params, cudaStream_t st) const
{
#ifdef _MSC_VER
    FlashAttentionOpImpl<T, 1> attention_op(batch_size_, head_num_, key_len_, seq_len_, size_per_head_);
    return attention_op(params, st);
#else
    return VERSION_SWITCH(op_version_, OP_VERSION, [&]() {
        FlashAttentionOpImpl<T, OP_VERSION> attention_op(batch_size_, head_num_, key_len_, seq_len_, size_per_head_);
        return attention_op(params, st);
    });
#endif
}

template class FlashAttentionOp<float>;
template class FlashAttentionOp<half>;

lvhan028's avatar
lvhan028 committed
837
}  // namespace turbomind