deploy.py 38.6 KB
Newer Older
1
2
3
4
5
6
7
# Copyright (c) OpenMMLab. All rights reserved.
import configparser
import json
import os
import os.path as osp
import re
import shutil
8
import sys
9
10
11
12
13
14
15
from pathlib import Path

import fire
import safetensors
import torch
from sentencepiece import SentencePieceProcessor

16
import lmdeploy
17
18
from lmdeploy.model import MODELS

19
supported_formats = ['llama', 'hf', 'awq', 'qwen']
20
21


22
def get_package_root_path():
23
24
    import lmdeploy
    return Path(lmdeploy.__file__).parent
25
26


27
def create_workspace(_path: str):
lvhan028's avatar
lvhan028 committed
28
29
30
31
32
33
34
    """Create a workspace.

    Args:
        _path (str): the path of the workspace
    Returns:
        bool: success or not
    """
35
36
37
38
39
40
41
42
43
44
45
46
    try:
        if osp.exists(_path):
            shutil.rmtree(_path)
        os.makedirs(_path)
        print(f'create workspace in directory {_path}')
        return True
    except Exception as e:
        print(f'create workspace in {_path} failed: {e}')
        return False


def destroy_workspace(_path: str):
lvhan028's avatar
lvhan028 committed
47
48
49
50
51
52
53
    """destroy workspace.

    Args:
        _path(str): the path of the workspace
    Returns:
        bool: success or not
    """
54
55
56
57
58
    try:
        shutil.rmtree(_path)
        print(f'destroy workspace in directory {_path}')
        return True
    except Exception as e:
59
        print(f'destroy workspace in {_path} failed: {e}')
60
61
62
63
        return False


def copy_triton_model_templates(_path: str):
lvhan028's avatar
lvhan028 committed
64
65
66
67
68
69
70
    """copy triton model templates to the specified path.

    Args:
        _path (str): the target path
    Returns:
        str: the path of the triton models
    """
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    try:
        cur_path = osp.abspath(__file__)
        dir_path = osp.dirname(cur_path)
        triton_models_path = osp.join(dir_path, 'triton_models')
        dst_path = osp.join(_path, 'triton_models')
        shutil.copytree(triton_models_path, dst_path, symlinks=True)
        print(f'copy triton model templates from "{triton_models_path}" to '
              f'"{dst_path}" successfully')
        shutil.copy(osp.join(dir_path, 'service_docker_up.sh'), _path)
        return dst_path
    except Exception as e:
        print(f'copy triton model templates from "{triton_models_path}"'
              f' to "{dst_path}" failed: {e}')
        return None


87
def tokenizer_info_sp(model_path: str):
lvhan028's avatar
lvhan028 committed
88
89
90
91
92
93
94
    """Return the vocabulary size, bos token id and eos token id.

    Args:
        model_path (str): the tokenizer model's path
    Returns:
        tuple: vocabulary size, bos token id and eos token id
    """
95
96
97
98
99
100
101
102
103
    assert os.path.isfile(model_path), model_path
    sp_model = SentencePieceProcessor(model_file=model_path)
    # BOS / EOS token IDs
    n_words = sp_model.vocab_size()
    bos_id = sp_model.bos_id()
    eos_id = sp_model.eos_id()
    return n_words, bos_id, eos_id


104
105
106
107
108
109
110
def tokenizer_info_qwen(model_dir: str):
    n_words = 151851
    bos_id = 0
    eos_id = 151643
    return n_words, bos_id, eos_id


111
112
113
def export(model_name: str,
           num_layer: int,
           norm_eps: float,
114
           kv_head_num: int,
115
116
117
118
           model_params: dict,
           tokenizer_path: str,
           out_dir: str,
           tp: int,
119
120
           size_per_head: int = 128,
           group_size: int = 0,
121
122
123
124
           weight_type: str = 'fp16',
           max_position_embeddings: int = 0,
           use_dynamic_ntk: int = 0,
           use_logn_attn: int = 0,
Lyu Han's avatar
Lyu Han committed
125
           rope_theta: float = 10000.0,
126
           tokenizer_info=tokenizer_info_sp):
lvhan028's avatar
lvhan028 committed
127
128
129
130
131
132
133
134
135
136
137
138
    """Export deploying information to a config file.

    Args:
        model_name (str): model's name
        num_layer (int): the number of transformer blocks
        norm_eps (float): norm epsilon
        model_params (dict): parameters of a model
        tokenizer_path (str): the tokenizer model's path
        out_dir (str): the path of the output directory
        tp (int): the number of tensor parallelism
        size_per_head (int): the dimension of each head
    """
139
140
141
142
143
144
145
    out_dir = osp.join(out_dir, 'weights')
    os.makedirs(out_dir, exist_ok=True)

    def save_bin(param: torch.Tensor, name):
        print(name, param.shape)
        if param.dtype in [torch.float, torch.bfloat16]:
            param = param.half()
146
        param.contiguous().cpu().numpy().tofile(osp.join(out_dir, name))
147

Li Zhang's avatar
Li Zhang committed
148
    attn_bias = False
149
    inter_size = 0
Li Zhang's avatar
Li Zhang committed
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
    tok_embeddings = model_params['tok_embeddings.weight']
    _vocab_size, dim = tok_embeddings.shape
    head_num = dim // size_per_head
    if _vocab_size % tp != 0:
        # Resolve https://github.com/InternLM/lmdeploy/issues/266
        # Pad tok_embeddings and output weights, making their shape divisible by TP # noqa: E501
        pad_size = (_vocab_size + tp - 1) // tp * tp - _vocab_size
        # Pad weight at the bottom of dim 0
        model_params['tok_embeddings.weight'] = torch.nn.functional.pad(
            tok_embeddings, (0, 0, 0, pad_size), 'constant', 0)
        # Pad output weight at the bottom of dim 0
        model_params['output.weight'] = torch.nn.functional.pad(
            model_params['output.weight'], (0, 0, 0, pad_size), 'constant', 0)

165
166
167
168
    # reverse the splitting axes since the weights are transposed above
    for param_name, param_data in model_params.items():
        split_dim = None
        key, ext = param_name.split('.')[-2:]
Li Zhang's avatar
Li Zhang committed
169
170
        if key == 'w_qkv' and ext == 'bias':
            attn_bias = True
171
        copy = False
Li Zhang's avatar
Li Zhang committed
172
        if key in ['w1', 'w3', 'w13', 'w_qkv']:
173
            split_dim = -1
174
            # TODO: move parameter extraction outside of the loop
175
            if key == 'w1':
176
177
178
                inter_size = max(inter_size, param_data.shape[-1])
            elif key == 'w13':
                inter_size = max(inter_size, param_data.shape[-1] // 2)
179
        elif key in ['w2', 'wo']:
Li Zhang's avatar
Li Zhang committed
180
            if ext in ['bias']:
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
                copy = True
            else:
                split_dim = 0
        if split_dim is not None:
            print(f'*** splitting {param_name}, shape={param_data.shape}, '
                  f'split_dim={split_dim}')
            assert param_data.shape[split_dim] % tp == 0
            split_size = param_data.shape[split_dim] // tp
            splits = torch.split(param_data, split_size, dim=split_dim)
            for i, split in enumerate(splits):
                prefix, ext = osp.splitext(param_name)
                save_bin(split, f'{prefix}.{i}{ext}')
        elif copy:
            print(f'### copying {param_name}, shape={param_data.shape}')
            copies = [param_data] * tp
            for i, copy in enumerate(copies):
                prefix, ext = osp.splitext(param_name)
                save_bin(copy, f'{prefix}.{i}{ext}')
        else:
            save_bin(param_data, param_name)

202
203
    assert inter_size > 0

204
    # export config and save it to {out_dir}/config.ini
205
    model = MODELS.get(model_name)()
206
    vocab_size, bos_id, eos_id = tokenizer_info(tokenizer_path)
207
    assert _vocab_size >= vocab_size, \
208
        f'different vocab size {_vocab_size} vs {vocab_size}'
lvhan028's avatar
lvhan028 committed
209
210
211
    cfg = dict(llama=dict(
        model_name=model_name,
        head_num=head_num,
212
        kv_head_num=kv_head_num,
lvhan028's avatar
lvhan028 committed
213
        size_per_head=size_per_head,
214
        vocab_size=_vocab_size,
lvhan028's avatar
lvhan028 committed
215
216
        num_layer=num_layer,
        rotary_embedding=size_per_head,
Lyu Han's avatar
Lyu Han committed
217
        rope_theta=rope_theta,
lvhan028's avatar
lvhan028 committed
218
219
        inter_size=inter_size,
        norm_eps=norm_eps,
220
        attn_bias=int(attn_bias),
lvhan028's avatar
lvhan028 committed
221
222
        start_id=bos_id,
        end_id=eos_id,
223
224
        weight_type=weight_type,
        group_size=group_size,
225
        # parameters for turbomind
lvhan028's avatar
lvhan028 committed
226
227
        max_batch_size=32,
        max_context_token_num=4,
228
        session_len=model.session_len + 8,
lvhan028's avatar
lvhan028 committed
229
230
        step_length=1,
        cache_max_entry_count=48,
231
        cache_chunk_size=1,
q.yao's avatar
q.yao committed
232
        use_context_fmha=1,
233
        quant_policy=0,
234
235
236
237
        tensor_para_size=tp,
        # extra attention params
        max_position_embeddings=max_position_embeddings,
        use_dynamic_ntk=int(use_dynamic_ntk),
Lyu Han's avatar
Lyu Han committed
238
239
        use_logn_attn=int(use_logn_attn),
    ))
240
241
242
243
244
245
246
247
248
249
250

    config = configparser.ConfigParser()
    for section, key_values in cfg.items():
        config[section] = key_values

    config_path = osp.join(out_dir, 'config.ini')
    with open(config_path, 'w') as f:
        config.write(f)
    return True


251
252
253
254
255
256
def merge_qkv(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, tp: int,
              dim: int):

    def reshape(x):
        return x.view(x.size(0), tp, -1) if dim == 2 else x.view(tp, -1)

Li Zhang's avatar
Li Zhang committed
257
258
259
260
    qkv = torch.cat((reshape(q), reshape(k), reshape(v)), dim=-1)

    # (input_dim, head_num + 2 * kv_head_num)
    return qkv.view(q.size(0), -1)
261
262


263
264
def deploy_llama(model_name: str, model_path: str, tokenizer_path: str,
                 triton_models_path: str, tp: int):
lvhan028's avatar
lvhan028 committed
265
266
267
268
269
270
271
272
273
274
    """Deploy a model with huggingface transformers' format.

    Args:
        model_name (str): the name of the to-be-deployed model
        model_path (str): the path of the directory where the model weight
          files are
        tokenizer_path (str): the path of the tokenizer model path
        triton_models_path (str): the path of the exported triton models
        tp (int): the number of tensor parallelism
    """
275
276
277
    if osp.exists(tokenizer_path):
        shutil.copy(tokenizer_path,
                    osp.join(triton_models_path, 'tokenizer/tokenizer.model'))
278
279
280
        with get_package_root_path() as root_path:
            shutil.copy(osp.join(root_path, 'turbomind/tokenizer.py'),
                        osp.join(triton_models_path, 'tokenizer'))
281
    else:
q.yao's avatar
q.yao committed
282
        print(f'tokenizer model {tokenizer_path} does not exist')
283
284
285
286
287
288
289
290
        return False
    # read model arguments from params.json
    try:
        params_path = osp.join(model_path, 'params.json')
        with open(params_path) as f:
            model_arg = json.load(f)
            num_layer = model_arg['n_layers']
            norm_eps = model_arg['norm_eps']
291
292
            head_num = model_arg.get('n_heads', 32)
            kv_head_num = model_arg.get('n_kv_heads', head_num)
293
294
295
296
    except Exception as e:
        print(f'get "n_layers" and "norm_eps" from {params_path} failed: {e}')
        return False

297
    # convert weights from llama to turbomind format
298
299
300
301
302
303
304
305
306
307
    checkpoints = []
    for pattern in ['*.pth', '*.pt']:
        checkpoints += sorted(Path(model_path).glob(pattern))
    print(checkpoints)
    n_ckpt = len(checkpoints)
    model_params = {}

    def get_param(_name, _size):
        print(_name, _size)
        if _name not in model_params:
lvhan028's avatar
lvhan028 committed
308
309
310
            model_params[_name] = torch.zeros(_size,
                                              dtype=torch.float16,
                                              device='cpu')
311
312
313
314
315
        return model_params[_name]

    for i, ckpt_path in enumerate(checkpoints):
        ckpt = torch.load(ckpt_path, map_location='cpu')
        for param_name, param_data in ckpt.items():
Li Zhang's avatar
Li Zhang committed
316
            key, ext = param_name.split('.')[-2:]
317
318
319
            # column-parallel
            if key in ['w1', 'w3', 'wq', 'wk', 'wv', 'output']:
                size = param_data.size(0)
Li Zhang's avatar
Li Zhang committed
320
321
                if ext == 'weight':
                    param = get_param(
q.yao's avatar
q.yao committed
322
323
                        param_name,
                        [size * n_ckpt, param_data.size(1)])
Li Zhang's avatar
Li Zhang committed
324
325
326
327
                    param.data[size * i:size * (i + 1), :] = param_data
                else:  # bias
                    param = get_param(param_name, [size * n_ckpt])
                    param.data[size * i:size * (i + 1)] = param_data
328
329
330
            # row-parallel
            elif key in ['w2', 'wo', 'tok_embeddings']:
                size = param_data.size(-1)
Li Zhang's avatar
Li Zhang committed
331
332
333
334
335
336
337
                if ext == 'weight':
                    param = get_param(param_name,
                                      [param_data.size(0), size * n_ckpt])
                    param.data[:, size * i:size * (i + 1)] = param_data
                else:  # bias
                    param = get_param(param_name, [size])
                    param.data = param_data
338
339
340
341
342
343
            elif i == 0:
                param = get_param(param_name, param_data.size())
                param.data = param_data
        del ckpt

    for name, param in model_params.items():
344
        # transpose all weights as TurboMind is expecting column-major
345
346
347
348
349
350
        # weights: (output_dims, input_dims) -> (input_dims, output_dims)
        key = name.split('.')[-2]
        if key in ['w1', 'w3', 'wq', 'wk', 'wv', 'w2', 'wo']:
            param.data = param.data.t()

    # concat qkv projection
Li Zhang's avatar
Li Zhang committed
351
352
    for t in ['weight', 'bias']:
        for i in range(1000):
q.yao's avatar
q.yao committed
353
354
355
            _qkv = [
                f'layers.{i}.attention.{k}.{t}' for k in ['wq', 'wk', 'wv']
            ]
Li Zhang's avatar
Li Zhang committed
356
357
358
359
            try:
                qkv = tuple(map(model_params.pop, _qkv))
            except KeyError:
                break
360
361
            # concat by heads
            qkv = merge_qkv(*qkv, tp, dim=2 if t == 'weight' else 1)
Li Zhang's avatar
Li Zhang committed
362
363
            print(f'layers.{i}.attention.w_qkv.{t}', qkv.shape)
            model_params[f'layers.{i}.attention.w_qkv.{t}'] = qkv
364

365
    assert i == 0 or num_layer == i, f'miss matched layers: {num_layer} vs {i}'
366

367
    return export(model_name, num_layer, norm_eps, kv_head_num, model_params,
368
369
370
371
372
                  tokenizer_path, triton_models_path, tp)


def permute(x: torch.Tensor):
    SIZE_PER_HEAD = 128
373
    if x.shape[-1] > 1:
374
375
376
377
378
379
380
381
382
383
384
385
386
        dim = x.shape[-1]
        n_heads = dim // SIZE_PER_HEAD
        return x.view(-1, n_heads, 2,
                      dim // n_heads // 2).transpose(2, 3).reshape(-1, dim)
    else:  # scales, zeros
        dim = x.shape[0]
        n_heads = dim // SIZE_PER_HEAD
        return x.view(n_heads, 2, dim // n_heads // 2,
                      1).transpose(1, 2).reshape(dim, 1)


def deploy_hf(model_name: str, model_path: str, tokenizer_path: str,
              triton_models_path: str, tp: int):
lvhan028's avatar
lvhan028 committed
387
388
389
390
391
392
393
394
395
396
    """Deploy a model with huggingface transformers' format.

    Args:
        model_name (str): the name of the to-be-deployed model
        model_path (str): the path of the directory where the model weight
          files are
        tokenizer_path (str): the path of the tokenizer model path
        triton_models_path (str): the path of the exported triton models
        tp (int): the number of tensor parallelism
    """
397
398
399
400
401
    if tokenizer_path is None:
        tokenizer_path = osp.join(model_path, 'tokenizer.model')
    if osp.exists(tokenizer_path):
        shutil.copy(tokenizer_path,
                    osp.join(triton_models_path, 'tokenizer/tokenizer.model'))
402
403
404
405
406
        for _file in os.listdir(model_path):
            if _file.endswith('.json') or _file.endswith('.py'):
                json_path = osp.join(model_path, _file)
                shutil.copy(json_path,
                            osp.join(triton_models_path, 'tokenizer', _file))
407
408
409
        with get_package_root_path() as root_path:
            shutil.copy(osp.join(root_path, 'turbomind/tokenizer.py'),
                        osp.join(triton_models_path, 'tokenizer'))
410
    else:
q.yao's avatar
q.yao committed
411
        print(f'tokenizer model {tokenizer_path} does not exist')
412
413
414
415
416
417
418
419
420
        exit(-1)

    # read model arguments from params.json
    try:
        params_path = osp.join(model_path, 'config.json')
        with open(params_path) as f:
            model_arg = json.load(f)
            num_layer = model_arg['num_hidden_layers']
            norm_eps = model_arg['rms_norm_eps']
Lyu Han's avatar
Lyu Han committed
421
422
423
424
            rope_theta = float(model_arg.get('rope_theta', 10000.0))
            max_position_embeddings = int(
                model_arg.get('max_position_embeddings', 0))
            repo_scaling = bool(model_arg.get('rope_scaling', False))
425
426
427
428
            if 'num_key_value_heads' in model_arg:
                kv_head_num = model_arg['num_key_value_heads']
            else:
                kv_head_num = model_arg['num_attention_heads']
429
430
431
432
433
    except Exception as e:
        print(f'get "num_hidden_layers" and "rms_norm_eps" from '
              f'{params_path} failed: {e}')
        return False

434
    # convert weights from hf to turbomind
435
436
437
    model_params = {}

    _qweight = 'weight'
Li Zhang's avatar
Li Zhang committed
438
    _suffixes = [_qweight, 'bias']
439
440
441

    _files = [file for file in os.listdir(model_path) if file.endswith('.bin')]
    _files = sorted(_files)
442
    print(_files)
443
444
445
446
447
448
449

    _params = {}
    for _file in _files:
        _tmp = torch.load(osp.join(model_path, _file), map_location='cpu')
        _params.update(_tmp)

    def get_tensor(name):
lvhan028's avatar
lvhan028 committed
450
        """return tensor according its name."""
451
452
        return _params[name]

Li Zhang's avatar
Li Zhang committed
453
    def get_tensor_transposed(name: str):
lvhan028's avatar
lvhan028 committed
454
        """return a transposed tensor according its name."""
455
        if name not in _params and name.find('bias'):
Li Zhang's avatar
Li Zhang committed
456
            return None
457
        return _params[name].t()
458

459
460
461
    w_pack = False
    if 'model.layers.0.self_attn.W_pack.weight' in _params:
        w_pack = True
462
463
464
465
466

    for i in range(1000):
        try:
            # attention weights
            for suffix in _suffixes:
467
                if w_pack:
468
469
470
471
                    _qkvo = [
                        f'model.layers.{i}.self_attn.{t}'
                        for t in ['W_pack', 'o_proj']
                    ]
472
                    qkv, o = map(get_tensor_transposed,
473
                                 map(('{}.' + suffix).format, _qkvo))
474
475
476
477
478
479
480
481
482
483

                    if qkv is None:
                        continue
                    _shape = qkv.shape[1] // 3
                    _qkv = torch.split(qkv, [_shape, _shape, _shape], dim=1)
                    q = _qkv[0]
                    k = _qkv[1]
                    v = _qkv[2]

                else:
484
485
486
                    _qkvo = [
                        f'model.layers.{i}.self_attn.{t}_proj' for t in 'qkvo'
                    ]
487
                    q, k, v, o = map(get_tensor_transposed,
488
                                     map(('{}.' + suffix).format, _qkvo))
Li Zhang's avatar
Li Zhang committed
489
490
491
492
493
494
495
                if q is None:
                    continue
                # q, k has different layout for fb & hf, convert to fb's
                # layout
                q = permute(q)
                k = permute(k)
                if suffix == _qweight:  # weight, qweight
496
497
                    qkv = merge_qkv(q, k, v, tp, dim=2)
                    print(suffix, qkv.shape)
Li Zhang's avatar
Li Zhang committed
498
                else:  # scales, zeros, bias
499
                    qkv = merge_qkv(q, k, v, tp, dim=1)
Li Zhang's avatar
Li Zhang committed
500
501
502
                    print(suffix, qkv.shape)
                for k, v in [('w_qkv', qkv), ('wo', o)]:
                    model_params[f'layers.{i}.attention.{k}.{suffix}'] = v
503
504
505
506
507
508
509
510
            # ffn weights
            _w123 = [
                f'model.layers.{i}.mlp.{t}_proj'
                for t in ['gate', 'down', 'up']
            ]
            for suffix in _suffixes:
                w1, w2, w3 = map(get_tensor_transposed,
                                 map(('{}.' + suffix).format, _w123))
Li Zhang's avatar
Li Zhang committed
511
512
513
514
515
516
                if w1 is None:
                    continue
                if suffix in ['scales', 'zeros', 'bias']:
                    w1, w2, w3 = map(lambda x: x.squeeze(dim=-1), [w1, w2, w3])
                for k, v in [('w1', w1), ('w2', w2), ('w3', w3)]:
                    model_params[f'layers.{i}.feed_forward.{k}.{suffix}'] = v
517
518
519
520
521
522
523
524
525
526
            other = [('attention_norm.weight', 'input_layernorm.weight'),
                     ('ffn_norm.weight', 'post_attention_layernorm.weight')]
            for ft, hf in other:
                model_params[f'layers.{i}.' +
                             ft] = get_tensor(f'model.layers.{i}.' + hf)
        except safetensors.SafetensorError:
            break
        except KeyError:
            break

Li Zhang's avatar
Li Zhang committed
527
    assert num_layer == i, f'miss matched layers: {num_layer} vs {i}'
528
529
530
531
532
533
534

    other = [('tok_embeddings.weight', 'model.embed_tokens.weight'),
             ('norm.weight', 'model.norm.weight'),
             ('output.weight', 'lm_head.weight')]
    for ft, hf in other:
        model_params[ft] = get_tensor(hf)

Lyu Han's avatar
Lyu Han committed
535
536
    if model_name == 'baichuan2-7b':
        # https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/modeling_baichuan.py#L507
537
538
539
540
        # https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat/blob/main/modeling_baichuan.py#L507
        model_params['output.weight'] = torch.nn.functional.normalize(
            model_params['output.weight'])

Lyu Han's avatar
Lyu Han committed
541
542
543
544
545
546
547
548
549
550
551
    return export(model_name,
                  num_layer,
                  norm_eps,
                  kv_head_num,
                  model_params,
                  tokenizer_path,
                  triton_models_path,
                  tp,
                  max_position_embeddings=max_position_embeddings,
                  use_dynamic_ntk=repo_scaling,
                  rope_theta=rope_theta)
552
553


554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
def deploy_awq(model_name: str, model_path: str, tokenizer_path: str,
               triton_models_path: str, tp: int, quant_path: str,
               group_size: int):
    """Deploy a model with huggingface transformers' format.

    Args:
        model_name (str): the name of the to-be-deployed model
        model_path (str): the path of the directory where the model weight
          files are
        tokenizer_path (str): the path of the tokenizer model path
        triton_models_path (str): the path of the exported triton models
        tp (int): the number of tensor parallelism
        quant_path (str): path of the quantized model, which can be None
        group_size (int): a parameter used in AWQ to quantize fp16 weights
            to 4 bits
    """
    if tokenizer_path is None:
        tokenizer_path = osp.join(model_path, 'tokenizer.model')
    if osp.exists(tokenizer_path):
        shutil.copy(tokenizer_path,
                    osp.join(triton_models_path, 'tokenizer/tokenizer.model'))
        for _file in os.listdir(model_path):
            if _file.endswith('.json') or _file.endswith('.py'):
                json_path = osp.join(model_path, _file)
                shutil.copy(json_path,
                            osp.join(triton_models_path, 'tokenizer', _file))
        with get_package_root_path() as root_path:
            shutil.copy(osp.join(root_path, 'turbomind/tokenizer.py'),
                        osp.join(triton_models_path, 'tokenizer'))
    else:
        print(f'tokenizer model {tokenizer_path} does not exist')
        exit(-1)

    # read model arguments from params.json
    try:
        params_path = osp.join(model_path, 'config.json')
        with open(params_path) as f:
            model_arg = json.load(f)
            num_layer = model_arg['num_hidden_layers']
            norm_eps = model_arg['rms_norm_eps']
Lyu Han's avatar
Lyu Han committed
594
            rope_theta = float(model_arg.get('rope_theta', 10000.0))
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
            if 'num_key_value_heads' in model_arg:
                kv_head_num = model_arg['num_key_value_heads']
            else:
                kv_head_num = model_arg['num_attention_heads']
    except Exception as e:
        print(f'get "num_hidden_layers" and "rms_norm_eps" from '
              f'{params_path} failed: {e}')
        return False

    # convert weights from hf to turbomind
    if quant_path is None:
        _files = [
            osp.join(model_path, file) for file in os.listdir(model_path)
            if file.endswith('.bin')
        ]
        _files = sorted(_files)
    else:
        _files = [quant_path]

    model_params = {}

    _params = {}
    for _file in _files:
        _tmp = torch.load(_file, map_location='cpu')
        _params.update(_tmp)

    def get_tensor(name):
        """return tensor according its name."""
        return _params[name].cuda().contiguous()

    # import _turbomind as _tm
    # TODO: find another way import _turbomind
    lmdeploy_dir = osp.split(lmdeploy.__file__)[0]
    sys.path.append(osp.join(lmdeploy_dir, 'lib'))
    import _turbomind as _tm  # noqa: E402

Li Zhang's avatar
Li Zhang committed
631
    def transpose_qk_s4(src: torch.Tensor):
632
633
634
635
636
637
        assert src.is_contiguous()
        dst = torch.zeros_like(src)
        _tm.transpose_qk_s4_k_m8(src, dst,
                                 src.size(-1) * 8, src.size(0), group_size)
        return dst

Li Zhang's avatar
Li Zhang committed
638
639
640
    def fuse_w1_w3_s4(w1_qw: torch.Tensor, w1_qz: torch.Tensor,
                      w1_s: torch.Tensor, w3_qw: torch.Tensor,
                      w3_qz: torch.Tensor, w3_s: torch.Tensor):
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

        def fuse(a: torch.Tensor, b: torch.Tensor):
            ab = torch.cat((a, b)).contiguous()
            _ab = torch.zeros_like(ab)
            _tm.fuse_w1_w3_s4_k_m8(ab, _ab, a.size(-1) * 8, a.size(0))
            return _ab.view(a.size(0), -1)

        w13_qw = fuse(w1_qw, w3_qw)
        w13_qz = fuse(w1_qz, w3_qz)

        w13_s = torch.cat((w1_s, w3_s)).view(2, w1_s.size(0), -1)
        w13_s = w13_s.permute(1, 2, 0).contiguous().view(w1_s.size(0), -1)

        return w13_qw, w13_qz, w13_s

    def convert_s4(qw: torch.Tensor, qz: torch.Tensor, s: torch.Tensor,
                   group_size: int):
        assert qw.is_contiguous()
        assert qz.is_contiguous()
        assert s.is_contiguous()
        _qw = torch.zeros_like(qw)
Li Zhang's avatar
Li Zhang committed
662
        _sz = torch.zeros_like(s, dtype=torch.int32)  # half2
663
664
665
666
667
        _ws = torch.zeros_like(s)
        _tm.convert_s4_k_m8(_qw, _sz, _ws, qw, s, qz,
                            qw.size(-1) * 8, qw.size(0), group_size)
        return _qw, _sz

Li Zhang's avatar
Li Zhang committed
668
669
670
671
    def tp_m_s4(x: torch.Tensor, tp: int):
        return x.view(x.size(0) // 32, tp, -1, 128).permute(0, 2, 3,
                                                            1).contiguous()

672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
    attn_bias = False

    for i in range(num_layer):
        print(i)

        # attention weights
        q_qw = get_tensor(f'model.layers.{i}.self_attn.q_proj.qweight')
        k_qw = get_tensor(f'model.layers.{i}.self_attn.k_proj.qweight')
        v_qw = get_tensor(f'model.layers.{i}.self_attn.v_proj.qweight')
        o_qw = get_tensor(f'model.layers.{i}.self_attn.o_proj.qweight')

        q_qz = get_tensor(f'model.layers.{i}.self_attn.q_proj.qzeros')
        k_qz = get_tensor(f'model.layers.{i}.self_attn.k_proj.qzeros')
        v_qz = get_tensor(f'model.layers.{i}.self_attn.v_proj.qzeros')
        o_qz = get_tensor(f'model.layers.{i}.self_attn.o_proj.qzeros')

        q_s = get_tensor(f'model.layers.{i}.self_attn.q_proj.scales')
        k_s = get_tensor(f'model.layers.{i}.self_attn.k_proj.scales')
        v_s = get_tensor(f'model.layers.{i}.self_attn.v_proj.scales')
        o_s = get_tensor(f'model.layers.{i}.self_attn.o_proj.scales')

        try:
            q_b = get_tensor(f'model.layers.{i}.self_attn.q_proj.bias')
            k_b = get_tensor(f'model.layers.{i}.self_attn.k_proj.bias')
            v_b = get_tensor(f'model.layers.{i}.self_attn.v_proj.bias')
            o_b = get_tensor(f'model.layers.{i}.self_attn.o_proj.bias')
            attn_bias = True
        except:  # noqa: E722
            pass

Li Zhang's avatar
Li Zhang committed
702
703
704
705
        q_qw = transpose_qk_s4(q_qw)
        k_qw = transpose_qk_s4(k_qw)
        q_qz = transpose_qk_s4(q_qz)
        k_qz = transpose_qk_s4(k_qz)
706
707
708
709
710
711
712
713
714
        q_s = permute(q_s)
        k_s = permute(k_s)

        qkv_qw = merge_qkv(q_qw, k_qw, v_qw, tp, dim=2)
        qkv_qz = merge_qkv(q_qz, k_qz, v_qz, tp, dim=2)
        qkv_s = merge_qkv(q_s, k_s, v_s, tp, dim=2)

        qkv_qw, qkv_sz = convert_s4(qkv_qw, qkv_qz, qkv_s, group_size)

Li Zhang's avatar
Li Zhang committed
715
716
        qkv_qw = tp_m_s4(qkv_qw, tp)

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
        model_params[f'layers.{i}.attention.w_qkv.qweight'] = qkv_qw
        model_params[f'layers.{i}.attention.w_qkv.scales_zeros'] = qkv_sz

        o_qw, o_sz = convert_s4(o_qw, o_qz, o_s, group_size)

        model_params[f'layers.{i}.attention.wo.qweight'] = o_qw
        model_params[f'layers.{i}.attention.wo.scales_zeros'] = o_sz

        if attn_bias:
            q_b = permute(q_b)
            k_b = permute(k_b)
            qkv_b = merge_qkv(q_b, k_b, v_b, tp, dim=1)
            model_params[f'layers.{i}.attention.w_qkv.bias'] = qkv_b
            model_params[f'layers.{i}.attention.wo.bias'] = o_b

        # ffn weights
        w1_qw = get_tensor(f'model.layers.{i}.mlp.gate_proj.qweight')
        w2_qw = get_tensor(f'model.layers.{i}.mlp.down_proj.qweight')
        w3_qw = get_tensor(f'model.layers.{i}.mlp.up_proj.qweight')

        w1_qz = get_tensor(f'model.layers.{i}.mlp.gate_proj.qzeros')
        w2_qz = get_tensor(f'model.layers.{i}.mlp.down_proj.qzeros')
        w3_qz = get_tensor(f'model.layers.{i}.mlp.up_proj.qzeros')

        w1_s = get_tensor(f'model.layers.{i}.mlp.gate_proj.scales')
        w2_s = get_tensor(f'model.layers.{i}.mlp.down_proj.scales')
        w3_s = get_tensor(f'model.layers.{i}.mlp.up_proj.scales')

Li Zhang's avatar
Li Zhang committed
745
746
        w13_qw, w13_qz, w13_s = fuse_w1_w3_s4(w1_qw, w1_qz, w1_s, w3_qw, w3_qz,
                                              w3_s)
747
748
749
750

        w13_qw, w13_sz = convert_s4(w13_qw, w13_qz, w13_s, group_size)
        w2_qw, w2_sz = convert_s4(w2_qw, w2_qz, w2_s, group_size)

Li Zhang's avatar
Li Zhang committed
751
752
        w13_qw = tp_m_s4(w13_qw, tp)

753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
        model_params[f'layers.{i}.feed_forward.w13.qweight'] = w13_qw
        model_params[f'layers.{i}.feed_forward.w13.scales_zeros'] = w13_sz

        model_params[f'layers.{i}.feed_forward.w2.qweight'] = w2_qw
        model_params[f'layers.{i}.feed_forward.w2.scales_zeros'] = w2_sz

        # norm weights
        attn_norm = get_tensor(f'model.layers.{i}.input_layernorm.weight')
        ffn_norm = get_tensor(
            f'model.layers.{i}.post_attention_layernorm.weight')

        model_params[f'layers.{i}.attention_norm.weight'] = attn_norm
        model_params[f'layers.{i}.ffn_norm.weight'] = ffn_norm

    other = [('tok_embeddings.weight', 'model.embed_tokens.weight'),
             ('norm.weight', 'model.norm.weight'),
             ('output.weight', 'lm_head.weight')]
    for ft, hf in other:
        model_params[ft] = get_tensor(hf)

    return export(model_name,
                  num_layer,
                  norm_eps,
                  kv_head_num,
                  model_params,
                  tokenizer_path,
                  triton_models_path,
                  tp,
                  weight_type='int4',
Lyu Han's avatar
Lyu Han committed
782
783
                  group_size=group_size,
                  rope_theta=rope_theta)
784
785


786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
def deploy_qwen(model_name: str, model_path: str, tokenizer_path: str,
                triton_models_path: str, tp: int):
    """Deploy a model with huggingface transformers' format.

    Args:
        model_name (str): the name of the to-be-deployed model
        model_path (str): the path of the directory where the model weight
          files are
        tokenizer_path (str): the path of the tokenizer model path
        triton_models_path (str): the path of the exported triton models
        tp (int): the number of tensor parallelism
        quant_path (str): path of the quantized model, which can be None
        group_size (int): a parameter used in AWQ to quantize fp16 weights
            to 4 bits
    """

    if osp.exists(model_path):
        shutil.copy(osp.join(model_path, 'qwen.tiktoken'),
                    osp.join(triton_models_path, 'tokenizer'))
        for _file in os.listdir(model_path):
            if _file.endswith('.json') or _file.endswith('.py'):
                json_path = osp.join(model_path, _file)
                shutil.copy(json_path,
                            osp.join(triton_models_path, 'tokenizer', _file))
        with get_package_root_path() as root_path:
            shutil.copy(osp.join(root_path, 'turbomind/tokenizer.py'),
                        osp.join(triton_models_path, 'tokenizer'))
    else:
        print(f'tokenizer model {tokenizer_path} does not exist')
        exit(-1)

    # read model arguments from params.json
    try:
        params_path = osp.join(model_path, 'config.json')
        with open(params_path) as f:
            config = json.load(f)
            num_layer = config['num_hidden_layers']
            norm_eps = config['layer_norm_epsilon']
Lyu Han's avatar
Lyu Han committed
824
            rope_theta = float(config.get('rotary_emb_base', 10000.0))
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
            if 'num_key_value_heads' in config:
                kv_head_num = config['num_key_value_heads']
            else:
                kv_head_num = config['num_attention_heads']
            seq_length = config['seq_length']
            use_dynamic_ntk = config['use_dynamic_ntk']
            use_logn_attn = config['use_logn_attn']
    except Exception as e:
        print(f'get "num_hidden_layers" and "layer_norm_epsilon" from '
              f'{params_path} failed: {e}')
        return False

    # convert weights from hf to turbomind
    model_params = {}

    _files = [file for file in os.listdir(model_path) if file.endswith('.bin')]
    _files = sorted(_files)
    print(_files)

    _params = {}
    for _file in _files:
        _tmp = torch.load(osp.join(model_path, _file), map_location='cpu')
        _params.update(_tmp)

    def get_tensor(name, trans=True):
        """return a transposed tensor according its name."""
        if trans:
            return _params[name].cuda().t()
        else:
            return _params[name].cuda()

    for i in range(num_layer):
        print(i)

        # qkv weights
        qkv_w = get_tensor(f'transformer.h.{i}.attn.c_attn.weight')
        q_w, k_w, v_w = torch.split(qkv_w, qkv_w.size(-1) // 3, dim=-1)
        q_w, k_w = permute(q_w), permute(k_w)
        qkv_w = merge_qkv(q_w, k_w, v_w, tp, dim=2)
        model_params[f'layers.{i}.attention.w_qkv.weight'] = qkv_w

        # qkv bias
        qkv_b = get_tensor(f'transformer.h.{i}.attn.c_attn.bias')
        q_b, k_b, v_b = torch.split(qkv_b, qkv_b.size(-1) // 3)
        q_b, k_b = permute(q_b), permute(k_b)
        qkv_b = merge_qkv(q_b, k_b, v_b, tp, dim=1)
        model_params[f'layers.{i}.attention.w_qkv.bias'] = qkv_b

        # o weights
        o_w = get_tensor(f'transformer.h.{i}.attn.c_proj.weight')
        model_params[f'layers.{i}.attention.wo.weight'] = o_w
        model_params[f'layers.{i}.attention.wo.bias'] = torch.zeros_like(q_b)

        # ffn weights
        # ours: w2(silu(w1(x)) * w3(x))
        # qwen: c_proj(w1(x) * silu(w2(x)))
        w1 = get_tensor(f'transformer.h.{i}.mlp.w2.weight')
        w3 = get_tensor(f'transformer.h.{i}.mlp.w1.weight')
        w2 = get_tensor(f'transformer.h.{i}.mlp.c_proj.weight')
        model_params[f'layers.{i}.feed_forward.w1.weight'] = w1
        model_params[f'layers.{i}.feed_forward.w2.weight'] = w2
        model_params[f'layers.{i}.feed_forward.w3.weight'] = w3

        # norm weights
        attn_norm = get_tensor(f'transformer.h.{i}.ln_1.weight')
        ffn_norm = get_tensor(f'transformer.h.{i}.ln_2.weight')

        model_params[f'layers.{i}.attention_norm.weight'] = attn_norm
        model_params[f'layers.{i}.ffn_norm.weight'] = ffn_norm

    other = [('tok_embeddings.weight', 'transformer.wte.weight'),
             ('norm.weight', 'transformer.ln_f.weight'),
             ('output.weight', 'lm_head.weight')]
    for ft, hf in other:
        model_params[ft] = get_tensor(hf, trans=False)

    return export(model_name,
                  num_layer,
                  norm_eps,
                  kv_head_num,
                  model_params,
                  model_path,
                  triton_models_path,
                  tp,
                  max_position_embeddings=seq_length,
                  use_dynamic_ntk=use_dynamic_ntk,
                  use_logn_attn=use_logn_attn,
Lyu Han's avatar
Lyu Han committed
912
                  rope_theta=rope_theta,
913
914
915
                  tokenizer_info=tokenizer_info_qwen)


916
def pack_model_repository(workspace_path: str):
lvhan028's avatar
lvhan028 committed
917
918
919
920
921
    """package the model repository.

    Args:
        workspace_path: the path of workspace
    """
922
923
924
925
926
927
928
929
930
    os.symlink(src='../../tokenizer',
               dst=osp.join(workspace_path, 'triton_models', 'preprocessing',
                            '1', 'tokenizer'))
    os.symlink(src='../../tokenizer',
               dst=osp.join(workspace_path, 'triton_models', 'postprocessing',
                            '1', 'tokenizer'))
    os.symlink(src='../../weights',
               dst=osp.join(workspace_path, 'triton_models', 'interactive',
                            '1', 'weights'))
931
932
    model_repo_dir = osp.join(workspace_path, 'model_repository')
    os.makedirs(model_repo_dir, exist_ok=True)
lvhan028's avatar
lvhan028 committed
933
    os.symlink(src=osp.join('../triton_models/interactive'),
934
               dst=osp.join(model_repo_dir, 'turbomind'))
lvhan028's avatar
lvhan028 committed
935
936
937
938
    os.symlink(src=osp.join('../triton_models/preprocessing'),
               dst=osp.join(model_repo_dir, 'preprocessing'))
    os.symlink(src=osp.join('../triton_models/postprocessing'),
               dst=osp.join(model_repo_dir, 'postprocessing'))
939
940
941
942


def main(model_name: str,
         model_path: str,
943
         model_format: str = None,
944
945
         tokenizer_path: str = None,
         dst_path: str = './workspace',
946
947
948
         tp: int = 1,
         quant_path: str = None,
         group_size: int = 0):
949
    """deploy llama family models via turbomind.
950
951
952

    Args:
        model_name (str): the name of the to-be-deployed model, such as
953
            llama-7b, llama-13b, vicuna-7b and etc
954
955
956
957
958
959
        model_path (str): the directory path of the model
        model_format (str): the format of the model, fb or hf. 'fb' stands for
            META's llama format, and 'hf' means huggingface format
        tokenizer_path (str): the path of tokenizer model
        dst_path (str): the destination path that saves outputs
        tp (int): the number of GPUs used for tensor parallelism
960
961
962
        quant_path (str): path of the quantized model, which can be None
        group_size (int): a parameter used in AWQ to quantize fp16 weights
            to 4 bits
963
    """
964
965
966
    assert model_name in MODELS.module_dict.keys(), \
        f"'{model_name}' is not supported. " \
        f'The supported models are: {MODELS.module_dict.keys()}'
967

968
969
970
    if model_format is None:
        model_format = 'qwen' if model_name == 'qwen-7b' else 'hf'

971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
    if model_format not in supported_formats:
        print(f'the model format "{model_format}" is not supported. '
              f'The supported format are: {supported_formats}')
        exit(-1)

    if model_format == 'llama' and tokenizer_path is None:
        print('The model is llama. Its tokenizer model path should be '
              'specified')
        exit(-1)

    if not create_workspace(dst_path):
        exit(-1)

    triton_models_path = copy_triton_model_templates(dst_path)
    if triton_models_path is None:
        exit(-1)

    if model_format == 'llama':
        res = deploy_llama(model_name, model_path, tokenizer_path,
                           triton_models_path, tp)
991
    elif model_format == 'hf':
992
993
        res = deploy_hf(model_name, model_path, tokenizer_path,
                        triton_models_path, tp)
994
995
996
    elif model_format == 'awq':
        res = deploy_awq(model_name, model_path, tokenizer_path,
                         triton_models_path, tp, quant_path, group_size)
997
998
999
    elif model_format == 'qwen':
        res = deploy_qwen(model_name, model_path, tokenizer_path,
                          triton_models_path, tp)
1000
1001
1002
1003

    # update `tensor_para_size` in `triton_models/interactive/config.pbtxt`
    with open(osp.join(triton_models_path, 'interactive/config.pbtxt'),
              'a') as f:
1004
1005
1006
1007
1008
        param = \
            'parameters {\n  key: "tensor_para_size"\n  value: {\n    ' \
            'string_value: ' + f'"{tp}"\n' + '  }\n}\n' + \
            'parameters {\n  key: "model_name"\n  value: {\n    ' \
            'string_value: ' + f'"{model_name}"\n' + '  }\n}\n'
1009
1010
        f.write(param)
    if not res:
1011
        print(f'deploy model "{model_name}" via turbomind failed')
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
        destroy_workspace(dst_path)
        exit(-1)

    # pack model repository for triton inference server
    pack_model_repository(dst_path)

    # update the value of $TP in `service_docker_up.sh`
    file_path = osp.join(dst_path, 'service_docker_up.sh')
    with open(file_path, 'r') as f:
        content = f.read()
        content = re.sub('TP=1', f'TP={tp}', content)
    with open(file_path, 'w') as f:
        f.write(content)


if __name__ == '__main__':
    fire.Fire(main)