"vscode:/vscode.git/clone" did not exist on "31673d26d055cbb9733486b695bd6e7024601caa"
deploy.py 21.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright (c) OpenMMLab. All rights reserved.
import configparser
import json
import os
import os.path as osp
import re
import shutil
from pathlib import Path

import fire
import safetensors
import torch
from sentencepiece import SentencePieceProcessor

15
16
from lmdeploy.model import MODELS

17
18
19
supported_formats = ['llama', 'hf']


20
def get_package_root_path():
21
22
    import lmdeploy
    return Path(lmdeploy.__file__).parent
23
24


25
def create_workspace(_path: str):
lvhan028's avatar
lvhan028 committed
26
27
28
29
30
31
32
    """Create a workspace.

    Args:
        _path (str): the path of the workspace
    Returns:
        bool: success or not
    """
33
34
35
36
37
38
39
40
41
42
43
44
    try:
        if osp.exists(_path):
            shutil.rmtree(_path)
        os.makedirs(_path)
        print(f'create workspace in directory {_path}')
        return True
    except Exception as e:
        print(f'create workspace in {_path} failed: {e}')
        return False


def destroy_workspace(_path: str):
lvhan028's avatar
lvhan028 committed
45
46
47
48
49
50
51
    """destroy workspace.

    Args:
        _path(str): the path of the workspace
    Returns:
        bool: success or not
    """
52
53
54
55
56
    try:
        shutil.rmtree(_path)
        print(f'destroy workspace in directory {_path}')
        return True
    except Exception as e:
57
        print(f'destroy workspace in {_path} failed: {e}')
58
59
60
61
        return False


def copy_triton_model_templates(_path: str):
lvhan028's avatar
lvhan028 committed
62
63
64
65
66
67
68
    """copy triton model templates to the specified path.

    Args:
        _path (str): the target path
    Returns:
        str: the path of the triton models
    """
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    try:
        cur_path = osp.abspath(__file__)
        dir_path = osp.dirname(cur_path)
        triton_models_path = osp.join(dir_path, 'triton_models')
        dst_path = osp.join(_path, 'triton_models')
        shutil.copytree(triton_models_path, dst_path, symlinks=True)
        print(f'copy triton model templates from "{triton_models_path}" to '
              f'"{dst_path}" successfully')
        shutil.copy(osp.join(dir_path, 'service_docker_up.sh'), _path)
        return dst_path
    except Exception as e:
        print(f'copy triton model templates from "{triton_models_path}"'
              f' to "{dst_path}" failed: {e}')
        return None


def tokenizer_info(model_path: str):
lvhan028's avatar
lvhan028 committed
86
87
88
89
90
91
92
    """Return the vocabulary size, bos token id and eos token id.

    Args:
        model_path (str): the tokenizer model's path
    Returns:
        tuple: vocabulary size, bos token id and eos token id
    """
93
94
95
96
97
98
99
100
101
102
103
104
    assert os.path.isfile(model_path), model_path
    sp_model = SentencePieceProcessor(model_file=model_path)
    # BOS / EOS token IDs
    n_words = sp_model.vocab_size()
    bos_id = sp_model.bos_id()
    eos_id = sp_model.eos_id()
    return n_words, bos_id, eos_id


def export(model_name: str,
           num_layer: int,
           norm_eps: float,
105
           kv_head_num: int,
106
107
108
109
110
           model_params: dict,
           tokenizer_path: str,
           out_dir: str,
           tp: int,
           size_per_head: int = 128):
lvhan028's avatar
lvhan028 committed
111
112
113
114
115
116
117
118
119
120
121
122
    """Export deploying information to a config file.

    Args:
        model_name (str): model's name
        num_layer (int): the number of transformer blocks
        norm_eps (float): norm epsilon
        model_params (dict): parameters of a model
        tokenizer_path (str): the tokenizer model's path
        out_dir (str): the path of the output directory
        tp (int): the number of tensor parallelism
        size_per_head (int): the dimension of each head
    """
123
124
125
126
127
128
129
130
131
    out_dir = osp.join(out_dir, 'weights')
    os.makedirs(out_dir, exist_ok=True)

    def save_bin(param: torch.Tensor, name):
        print(name, param.shape)
        if param.dtype in [torch.float, torch.bfloat16]:
            param = param.half()
        param.contiguous().numpy().tofile(osp.join(out_dir, name))

Li Zhang's avatar
Li Zhang committed
132
133
    attn_bias = False

134
135
136
137
138
139
140
    # reverse the splitting axes since the weights are transposed above
    for param_name, param_data in model_params.items():
        if param_name == 'tok_embeddings.weight':
            _vocab_size, dim = param_data.shape
            head_num = dim // size_per_head
        split_dim = None
        key, ext = param_name.split('.')[-2:]
Li Zhang's avatar
Li Zhang committed
141
142
        if key == 'w_qkv' and ext == 'bias':
            attn_bias = True
143
        copy = False
144
        if key in ['w1', 'w3']:
145
146
147
            split_dim = -1
            if key == 'w1':
                inter_size = param_data.shape[-1]
148
149
        elif key == 'w_qkv':
            split_dim = -2
150
        elif key in ['w2', 'wo']:
Li Zhang's avatar
Li Zhang committed
151
            if ext in ['scales', 'zeros', 'bias']:
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
                copy = True
            else:
                split_dim = 0
        if split_dim is not None:
            print(f'*** splitting {param_name}, shape={param_data.shape}, '
                  f'split_dim={split_dim}')
            assert param_data.shape[split_dim] % tp == 0
            split_size = param_data.shape[split_dim] // tp
            splits = torch.split(param_data, split_size, dim=split_dim)
            for i, split in enumerate(splits):
                prefix, ext = osp.splitext(param_name)
                save_bin(split, f'{prefix}.{i}{ext}')
        elif copy:
            print(f'### copying {param_name}, shape={param_data.shape}')
            copies = [param_data] * tp
            for i, copy in enumerate(copies):
                prefix, ext = osp.splitext(param_name)
                save_bin(copy, f'{prefix}.{i}{ext}')
        else:
            save_bin(param_data, param_name)

    # export config and save it to {out_dir}/config.ini
174
    model = MODELS.get(model_name)()
175
    vocab_size, bos_id, eos_id = tokenizer_info(tokenizer_path)
176
    assert _vocab_size >= vocab_size, \
177
        f'different vocab size {_vocab_size} vs {vocab_size}'
lvhan028's avatar
lvhan028 committed
178
179
180
    cfg = dict(llama=dict(
        model_name=model_name,
        head_num=head_num,
181
        kv_head_num=kv_head_num,
lvhan028's avatar
lvhan028 committed
182
183
184
185
186
187
        size_per_head=size_per_head,
        vocab_size=vocab_size,
        num_layer=num_layer,
        rotary_embedding=size_per_head,
        inter_size=inter_size,
        norm_eps=norm_eps,
188
        attn_bias=int(attn_bias),
lvhan028's avatar
lvhan028 committed
189
190
191
        start_id=bos_id,
        end_id=eos_id,
        weight_type='fp16',
192
        # parameters for turbomind
lvhan028's avatar
lvhan028 committed
193
194
        max_batch_size=32,
        max_context_token_num=4,
195
        session_len=model.session_len + 8,
lvhan028's avatar
lvhan028 committed
196
197
        step_length=1,
        cache_max_entry_count=48,
198
        cache_chunk_size=1,
q.yao's avatar
q.yao committed
199
        use_context_fmha=1,
200
201
        quant_policy=0,
        tensor_para_size=tp))
202
203
204
205
206
207
208
209
210
211
212

    config = configparser.ConfigParser()
    for section, key_values in cfg.items():
        config[section] = key_values

    config_path = osp.join(out_dir, 'config.ini')
    with open(config_path, 'w') as f:
        config.write(f)
    return True


213
214
215
216
217
218
219
220
221
def merge_qkv(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, tp: int,
              dim: int):

    def reshape(x):
        return x.view(x.size(0), tp, -1) if dim == 2 else x.view(tp, -1)

    return torch.cat((reshape(q), reshape(k), reshape(v)), dim=-1)


222
223
def deploy_llama(model_name: str, model_path: str, tokenizer_path: str,
                 triton_models_path: str, tp: int):
lvhan028's avatar
lvhan028 committed
224
225
226
227
228
229
230
231
232
233
    """Deploy a model with huggingface transformers' format.

    Args:
        model_name (str): the name of the to-be-deployed model
        model_path (str): the path of the directory where the model weight
          files are
        tokenizer_path (str): the path of the tokenizer model path
        triton_models_path (str): the path of the exported triton models
        tp (int): the number of tensor parallelism
    """
234
235
236
    if osp.exists(tokenizer_path):
        shutil.copy(tokenizer_path,
                    osp.join(triton_models_path, 'tokenizer/tokenizer.model'))
237
238
239
        with get_package_root_path() as root_path:
            shutil.copy(osp.join(root_path, 'turbomind/tokenizer.py'),
                        osp.join(triton_models_path, 'tokenizer'))
240
    else:
q.yao's avatar
q.yao committed
241
        print(f'tokenizer model {tokenizer_path} does not exist')
242
243
244
245
246
247
248
249
        return False
    # read model arguments from params.json
    try:
        params_path = osp.join(model_path, 'params.json')
        with open(params_path) as f:
            model_arg = json.load(f)
            num_layer = model_arg['n_layers']
            norm_eps = model_arg['norm_eps']
250
251
            head_num = model_arg.get('n_heads', 32)
            kv_head_num = model_arg.get('n_kv_heads', head_num)
252
253
254
255
    except Exception as e:
        print(f'get "n_layers" and "norm_eps" from {params_path} failed: {e}')
        return False

256
    # convert weights from llama to turbomind format
257
258
259
260
261
262
263
264
265
266
    checkpoints = []
    for pattern in ['*.pth', '*.pt']:
        checkpoints += sorted(Path(model_path).glob(pattern))
    print(checkpoints)
    n_ckpt = len(checkpoints)
    model_params = {}

    def get_param(_name, _size):
        print(_name, _size)
        if _name not in model_params:
lvhan028's avatar
lvhan028 committed
267
268
269
            model_params[_name] = torch.zeros(_size,
                                              dtype=torch.float16,
                                              device='cpu')
270
271
272
273
274
        return model_params[_name]

    for i, ckpt_path in enumerate(checkpoints):
        ckpt = torch.load(ckpt_path, map_location='cpu')
        for param_name, param_data in ckpt.items():
Li Zhang's avatar
Li Zhang committed
275
            key, ext = param_name.split('.')[-2:]
276
277
278
            # column-parallel
            if key in ['w1', 'w3', 'wq', 'wk', 'wv', 'output']:
                size = param_data.size(0)
Li Zhang's avatar
Li Zhang committed
279
280
                if ext == 'weight':
                    param = get_param(
q.yao's avatar
q.yao committed
281
282
                        param_name,
                        [size * n_ckpt, param_data.size(1)])
Li Zhang's avatar
Li Zhang committed
283
284
285
286
                    param.data[size * i:size * (i + 1), :] = param_data
                else:  # bias
                    param = get_param(param_name, [size * n_ckpt])
                    param.data[size * i:size * (i + 1)] = param_data
287
288
289
            # row-parallel
            elif key in ['w2', 'wo', 'tok_embeddings']:
                size = param_data.size(-1)
Li Zhang's avatar
Li Zhang committed
290
291
292
293
294
295
296
                if ext == 'weight':
                    param = get_param(param_name,
                                      [param_data.size(0), size * n_ckpt])
                    param.data[:, size * i:size * (i + 1)] = param_data
                else:  # bias
                    param = get_param(param_name, [size])
                    param.data = param_data
297
298
299
300
301
302
            elif i == 0:
                param = get_param(param_name, param_data.size())
                param.data = param_data
        del ckpt

    for name, param in model_params.items():
303
        # transpose all weights as TurboMind is expecting column-major
304
305
306
307
308
309
        # weights: (output_dims, input_dims) -> (input_dims, output_dims)
        key = name.split('.')[-2]
        if key in ['w1', 'w3', 'wq', 'wk', 'wv', 'w2', 'wo']:
            param.data = param.data.t()

    # concat qkv projection
Li Zhang's avatar
Li Zhang committed
310
311
    for t in ['weight', 'bias']:
        for i in range(1000):
q.yao's avatar
q.yao committed
312
313
314
            _qkv = [
                f'layers.{i}.attention.{k}.{t}' for k in ['wq', 'wk', 'wv']
            ]
Li Zhang's avatar
Li Zhang committed
315
316
317
318
            try:
                qkv = tuple(map(model_params.pop, _qkv))
            except KeyError:
                break
319
320
            # concat by heads
            qkv = merge_qkv(*qkv, tp, dim=2 if t == 'weight' else 1)
Li Zhang's avatar
Li Zhang committed
321
322
            print(f'layers.{i}.attention.w_qkv.{t}', qkv.shape)
            model_params[f'layers.{i}.attention.w_qkv.{t}'] = qkv
323

324
    assert i == 0 or num_layer == i, f'miss matched layers: {num_layer} vs {i}'
325

326
    return export(model_name, num_layer, norm_eps, kv_head_num, model_params,
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
                  tokenizer_path, triton_models_path, tp)


def permute(x: torch.Tensor):
    SIZE_PER_HEAD = 128
    if x.shape[-1] > 1:  # qweights
        dim = x.shape[-1]
        n_heads = dim // SIZE_PER_HEAD
        return x.view(-1, n_heads, 2,
                      dim // n_heads // 2).transpose(2, 3).reshape(-1, dim)
    else:  # scales, zeros
        dim = x.shape[0]
        n_heads = dim // SIZE_PER_HEAD
        return x.view(n_heads, 2, dim // n_heads // 2,
                      1).transpose(1, 2).reshape(dim, 1)


def deploy_hf(model_name: str, model_path: str, tokenizer_path: str,
              triton_models_path: str, tp: int):
lvhan028's avatar
lvhan028 committed
346
347
348
349
350
351
352
353
354
355
    """Deploy a model with huggingface transformers' format.

    Args:
        model_name (str): the name of the to-be-deployed model
        model_path (str): the path of the directory where the model weight
          files are
        tokenizer_path (str): the path of the tokenizer model path
        triton_models_path (str): the path of the exported triton models
        tp (int): the number of tensor parallelism
    """
356
357
358
359
360
    if tokenizer_path is None:
        tokenizer_path = osp.join(model_path, 'tokenizer.model')
    if osp.exists(tokenizer_path):
        shutil.copy(tokenizer_path,
                    osp.join(triton_models_path, 'tokenizer/tokenizer.model'))
361
362
363
364
365
        for _file in os.listdir(model_path):
            if _file.endswith('.json') or _file.endswith('.py'):
                json_path = osp.join(model_path, _file)
                shutil.copy(json_path,
                            osp.join(triton_models_path, 'tokenizer', _file))
366
367
368
        with get_package_root_path() as root_path:
            shutil.copy(osp.join(root_path, 'turbomind/tokenizer.py'),
                        osp.join(triton_models_path, 'tokenizer'))
369
    else:
q.yao's avatar
q.yao committed
370
        print(f'tokenizer model {tokenizer_path} does not exist')
371
372
373
374
375
376
377
378
379
        exit(-1)

    # read model arguments from params.json
    try:
        params_path = osp.join(model_path, 'config.json')
        with open(params_path) as f:
            model_arg = json.load(f)
            num_layer = model_arg['num_hidden_layers']
            norm_eps = model_arg['rms_norm_eps']
380
381
382
383
            if 'num_key_value_heads' in model_arg:
                kv_head_num = model_arg['num_key_value_heads']
            else:
                kv_head_num = model_arg['num_attention_heads']
384
385
386
387
388
    except Exception as e:
        print(f'get "num_hidden_layers" and "rms_norm_eps" from '
              f'{params_path} failed: {e}')
        return False

389
    # convert weights from hf to turbomind
390
391
392
    model_params = {}

    _qweight = 'weight'
Li Zhang's avatar
Li Zhang committed
393
    _suffixes = [_qweight, 'bias']
394
395
396

    _files = [file for file in os.listdir(model_path) if file.endswith('.bin')]
    _files = sorted(_files)
397
    print(_files)
398
399
400
401
402
403
404

    _params = {}
    for _file in _files:
        _tmp = torch.load(osp.join(model_path, _file), map_location='cpu')
        _params.update(_tmp)

    def get_tensor(name):
lvhan028's avatar
lvhan028 committed
405
        """return tensor according its name."""
406
407
        return _params[name]

Li Zhang's avatar
Li Zhang committed
408
    def get_tensor_transposed(name: str):
lvhan028's avatar
lvhan028 committed
409
        """return a transposed tensor according its name."""
410
        if name not in _params and name.find('bias'):
Li Zhang's avatar
Li Zhang committed
411
            return None
412
        return _params[name].t()
413

414
415
416
    w_pack = False
    if 'model.layers.0.self_attn.W_pack.weight' in _params:
        w_pack = True
417
418
419
420
421

    for i in range(1000):
        try:
            # attention weights
            for suffix in _suffixes:
422
                if w_pack:
423
424
425
426
                    _qkvo = [
                        f'model.layers.{i}.self_attn.{t}'
                        for t in ['W_pack', 'o_proj']
                    ]
427
                    qkv, o = map(get_tensor_transposed,
428
                                 map(('{}.' + suffix).format, _qkvo))
429
430
431
432
433
434
435
436
437
438

                    if qkv is None:
                        continue
                    _shape = qkv.shape[1] // 3
                    _qkv = torch.split(qkv, [_shape, _shape, _shape], dim=1)
                    q = _qkv[0]
                    k = _qkv[1]
                    v = _qkv[2]

                else:
439
440
441
                    _qkvo = [
                        f'model.layers.{i}.self_attn.{t}_proj' for t in 'qkvo'
                    ]
442
                    q, k, v, o = map(get_tensor_transposed,
443
                                     map(('{}.' + suffix).format, _qkvo))
Li Zhang's avatar
Li Zhang committed
444
445
446
447
448
449
450
                if q is None:
                    continue
                # q, k has different layout for fb & hf, convert to fb's
                # layout
                q = permute(q)
                k = permute(k)
                if suffix == _qweight:  # weight, qweight
451
452
                    qkv = merge_qkv(q, k, v, tp, dim=2)
                    print(suffix, qkv.shape)
Li Zhang's avatar
Li Zhang committed
453
                else:  # scales, zeros, bias
454
                    qkv = merge_qkv(q, k, v, tp, dim=1)
Li Zhang's avatar
Li Zhang committed
455
456
457
                    print(suffix, qkv.shape)
                for k, v in [('w_qkv', qkv), ('wo', o)]:
                    model_params[f'layers.{i}.attention.{k}.{suffix}'] = v
458
459
460
461
462
463
464
465
            # ffn weights
            _w123 = [
                f'model.layers.{i}.mlp.{t}_proj'
                for t in ['gate', 'down', 'up']
            ]
            for suffix in _suffixes:
                w1, w2, w3 = map(get_tensor_transposed,
                                 map(('{}.' + suffix).format, _w123))
Li Zhang's avatar
Li Zhang committed
466
467
468
469
470
471
                if w1 is None:
                    continue
                if suffix in ['scales', 'zeros', 'bias']:
                    w1, w2, w3 = map(lambda x: x.squeeze(dim=-1), [w1, w2, w3])
                for k, v in [('w1', w1), ('w2', w2), ('w3', w3)]:
                    model_params[f'layers.{i}.feed_forward.{k}.{suffix}'] = v
472
473
474
475
476
477
478
479
480
481
            other = [('attention_norm.weight', 'input_layernorm.weight'),
                     ('ffn_norm.weight', 'post_attention_layernorm.weight')]
            for ft, hf in other:
                model_params[f'layers.{i}.' +
                             ft] = get_tensor(f'model.layers.{i}.' + hf)
        except safetensors.SafetensorError:
            break
        except KeyError:
            break

Li Zhang's avatar
Li Zhang committed
482
    assert num_layer == i, f'miss matched layers: {num_layer} vs {i}'
483
484
485
486
487
488
489

    other = [('tok_embeddings.weight', 'model.embed_tokens.weight'),
             ('norm.weight', 'model.norm.weight'),
             ('output.weight', 'lm_head.weight')]
    for ft, hf in other:
        model_params[ft] = get_tensor(hf)

490
    return export(model_name, num_layer, norm_eps, kv_head_num, model_params,
q.yao's avatar
q.yao committed
491
                  tokenizer_path, triton_models_path, tp)
492
493
494


def pack_model_repository(workspace_path: str):
lvhan028's avatar
lvhan028 committed
495
496
497
498
499
    """package the model repository.

    Args:
        workspace_path: the path of workspace
    """
500
501
502
503
504
505
506
507
508
    os.symlink(src='../../tokenizer',
               dst=osp.join(workspace_path, 'triton_models', 'preprocessing',
                            '1', 'tokenizer'))
    os.symlink(src='../../tokenizer',
               dst=osp.join(workspace_path, 'triton_models', 'postprocessing',
                            '1', 'tokenizer'))
    os.symlink(src='../../weights',
               dst=osp.join(workspace_path, 'triton_models', 'interactive',
                            '1', 'weights'))
509
510
    model_repo_dir = osp.join(workspace_path, 'model_repository')
    os.makedirs(model_repo_dir, exist_ok=True)
lvhan028's avatar
lvhan028 committed
511
    os.symlink(src=osp.join('../triton_models/interactive'),
512
               dst=osp.join(model_repo_dir, 'turbomind'))
lvhan028's avatar
lvhan028 committed
513
514
515
516
    os.symlink(src=osp.join('../triton_models/preprocessing'),
               dst=osp.join(model_repo_dir, 'preprocessing'))
    os.symlink(src=osp.join('../triton_models/postprocessing'),
               dst=osp.join(model_repo_dir, 'postprocessing'))
517
518
519
520


def main(model_name: str,
         model_path: str,
521
         model_format: str = 'hf',
522
523
524
         tokenizer_path: str = None,
         dst_path: str = './workspace',
         tp: int = 1):
525
    """deploy llama family models via turbomind.
526
527
528

    Args:
        model_name (str): the name of the to-be-deployed model, such as
529
            llama-7b, llama-13b, vicuna-7b and etc
530
531
532
533
534
535
536
        model_path (str): the directory path of the model
        model_format (str): the format of the model, fb or hf. 'fb' stands for
            META's llama format, and 'hf' means huggingface format
        tokenizer_path (str): the path of tokenizer model
        dst_path (str): the destination path that saves outputs
        tp (int): the number of GPUs used for tensor parallelism
    """
537
538
539
    assert model_name in MODELS.module_dict.keys(), \
        f"'{model_name}' is not supported. " \
        f'The supported models are: {MODELS.module_dict.keys()}'
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

    if model_format not in supported_formats:
        print(f'the model format "{model_format}" is not supported. '
              f'The supported format are: {supported_formats}')
        exit(-1)

    if model_format == 'llama' and tokenizer_path is None:
        print('The model is llama. Its tokenizer model path should be '
              'specified')
        exit(-1)

    if not create_workspace(dst_path):
        exit(-1)

    triton_models_path = copy_triton_model_templates(dst_path)
    if triton_models_path is None:
        exit(-1)

    if model_format == 'llama':
        res = deploy_llama(model_name, model_path, tokenizer_path,
                           triton_models_path, tp)
    else:
        res = deploy_hf(model_name, model_path, tokenizer_path,
                        triton_models_path, tp)

    # update `tensor_para_size` in `triton_models/interactive/config.pbtxt`
    with open(osp.join(triton_models_path, 'interactive/config.pbtxt'),
              'a') as f:
568
569
570
571
572
        param = \
            'parameters {\n  key: "tensor_para_size"\n  value: {\n    ' \
            'string_value: ' + f'"{tp}"\n' + '  }\n}\n' + \
            'parameters {\n  key: "model_name"\n  value: {\n    ' \
            'string_value: ' + f'"{model_name}"\n' + '  }\n}\n'
573
574
        f.write(param)
    if not res:
575
        print(f'deploy model "{model_name}" via turbomind failed')
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
        destroy_workspace(dst_path)
        exit(-1)

    # pack model repository for triton inference server
    pack_model_repository(dst_path)

    # update the value of $TP in `service_docker_up.sh`
    file_path = osp.join(dst_path, 'service_docker_up.sh')
    with open(file_path, 'r') as f:
        content = f.read()
        content = re.sub('TP=1', f'TP={tp}', content)
    with open(file_path, 'w') as f:
        f.write(content)


if __name__ == '__main__':
    fire.Fire(main)