profile_throughput.py 9.71 KB
Newer Older
1
2
# Copyright (c) OpenMMLab. All rights reserved.
import csv
3
import json
4
import os
5
6
7
8
9
10
11
import random
import time
from queue import Queue
from threading import Thread
from typing import List, Tuple

import fire
12
import numpy as np
13
from tqdm import tqdm
14

15
16
from lmdeploy.tokenizer import Tokenizer
from lmdeploy.turbomind import TurboMind
17
18
19
20
21
22
23
24
25
26
27
28
29
30


def sample_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: Tokenizer,
) -> List[Tuple[str, int, int]]:
    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
    # Filter out the conversations with less than 2 turns.
    dataset = [data for data in dataset if len(data['conversations']) >= 2]
    # Only keep the first two turns of each conversation.
    dataset = [(data['conversations'][0]['value'],
31
                data['conversations'][1]['value']) for data in dataset]
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

    # Tokenize the prompts and completions.
    prompts = [prompt for prompt, _ in dataset]
    prompt_token_ids = tokenizer(prompts).input_ids
    completions = [completion for _, completion in dataset]
    completion_token_ids = tokenizer(completions).input_ids
    tokenized_dataset = []
    for i in range(len(dataset)):
        output_len = len(completion_token_ids[i])
        tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))

    # Filter out too long sequences.
    filtered_dataset: List[Tuple[str, int, int]] = []
    for prompt, prompt_token_ids, output_len in tokenized_dataset:
        prompt_len = len(prompt_token_ids)
        if prompt_len < 4 or output_len < 4:
            # Prune too short sequences.
            continue
        if prompt_len > 1024 or prompt_len + output_len > 2048:
            # Prune too long sequences.
            continue
        filtered_dataset.append((prompt, prompt_len, output_len))

    # Sample the requests.
    sampled_requests = random.sample(filtered_dataset, num_requests)
    return sampled_requests


class Engine:

62
63
64
65
66
67
68
    def __init__(self, model_path: str, tp: int, csv: str, **kwargs):
        # avoid turbomind checking chat template name by setting
        # `model_name='llama'`
        tm_model = TurboMind(model_path=model_path,
                             model_name='llama',
                             tp=tp,
                             **kwargs)
69
        self.tm_model = tm_model
70
71
72
        self.tokenizer = tm_model.tokenizer
        self.csv = csv
        self.pbar = None
73

74
75
    def _inference(self, req_queue: Queue, res_queue: Queue, session_id: int,
                   stream_output: bool):
76
        model_inst = self.tm_model.create_instance()
77
78
79
        stats = []
        for prompt, input_seqlen, output_seqlen in iter(
                req_queue.get, [None, None, None]):
80
            input_ids = self.tokenizer(prompt).input_ids
81
            offset = 0
82
83
84
            timestamps = []
            tokens = []
            timestamps.append(time.perf_counter())
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
            for outputs in model_inst.stream_infer(
                    session_id,
                    input_ids=input_ids,
                    request_output_len=output_seqlen,
                    temperature=1.0,
                    top_p=1.0,
                    sequence_start=True,
                    sequence_end=True,
                    ignore_eos=True,
                    stream_output=stream_output):
                res, token = outputs[0]
                self.tokenizer.decode(res, offset)
                offset = token
                timestamps.append(time.perf_counter())
                tokens.append(token)
            first_token_latency = np.round(timestamps[1] - timestamps[0], 3)
            token_latency = np.round(timestamps[-1] - timestamps[0], 3)
            completion_tokens = tokens[-1]
103
104
105
106
107
            assert output_seqlen <= completion_tokens <= output_seqlen + 1, \
                f'Error. session_id({session_id}) request {output_seqlen} ' \
                f'tokens, but generate {completion_tokens} tokens.\n' \
                f'prompt: {prompt}'
            total_tokens = tokens[-1] + input_seqlen
108
109
110
111
            stats.append([
                first_token_latency, completion_tokens, output_seqlen,
                total_tokens, token_latency
            ])
112
            self.pbar.update(1)
113
114
115
116
117
118
119
120
        res_queue.put((session_id, stats))

    def process_request(self,
                        requests,
                        concurrency: int = 1,
                        stream_output: bool = True):
        res_queue = Queue()
        req_queue = Queue()
121
122
        threads = []

123
124
        self.pbar = tqdm(total=len(requests))

125
126
127
128
129
130
        # feed request to q
        for req in requests:
            req_queue.put(req)
        for i in range(concurrency):
            req_queue.put([None, None, None])

131
132
133
134
        start = time.time()

        # start threads
        for i in range(concurrency):
135
136
            t = Thread(target=self._inference,
                       args=(req_queue, res_queue, i, stream_output))
137
138
139
140
141
142
143
            t.start()
            threads.append(t)

        # wait for finish
        for t in threads:
            t.join()

144
145
146
147
148
        elapsed_time = time.time() - start

        stats = []
        while not res_queue.empty():
            session_id, _stats = res_queue.get()
149
150
            # print(f'\n{"-" * 50}\n'
            #       f'session {session_id} stats: \n{_stats}\n{"-" * 50}\n')
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
            stats.append(np.array(_stats))

        stats = np.concatenate(stats).reshape(-1, 5)

        first_token_latency_min = np.min(stats[:, 0], axis=0)
        first_token_latency_max = np.max(stats[:, 0], axis=0)
        first_token_latency_ave = np.mean(stats[:, 0], axis=0)
        completion_tokens = np.sum(stats[:, 1], axis=0)
        total_tokens = np.sum(stats[:, 3], axis=0)
        prompt_tokens = total_tokens - completion_tokens
        completion_token_throughput = completion_tokens / elapsed_time
        total_token_throughput = total_tokens / elapsed_time
        rqs = len(requests) / elapsed_time
        rqm = rqs * 60

        print(f'\n{"-" * 50}\nconcurrency: {concurrency}\n'
              f'elapsed_time: {elapsed_time:.3f}s\n')
        if stream_output:
            print(f'first_token latency(min, max, ave): '
                  f'{first_token_latency_min:.3f}s, '
                  f'{first_token_latency_max:.3f}s, '
                  f'{first_token_latency_ave:.3f}s\n')
        print(
            f'number of prompt tokens: {prompt_tokens:.0f}\n'
            f'number of completion tokens: {completion_tokens:.0f}\n'
            f'token throughput (completion token): {completion_token_throughput:.3f} token/s\n'  # noqa
            f'token throughput (prompt + completion token): {total_token_throughput:.3f} token/s\n'  # noqa
            f'RPS (request per second): {rqs:.3f} req/s\n'
            f'RPM (request per minute): {rqm:.3f} req/min\n'
            f'{"-" * 50}\n')
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        if self.csv:
            with open(self.csv, 'w') as csvfile:
                writer = csv.writer(csvfile)
                writer.writerow([
                    'batch', 'num_promts', 'prompt_tokens',
                    'completion_tokens', '1st_token_latency(min)(s)',
                    '1st_token_latency(max)(s)', '1st_token_latency(ave)(s)',
                    'output token thr(tokens/s', 'total token thr(token/s)',
                    'RPM'
                ])
                writer.writerow([
                    concurrency,
                    len(requests), prompt_tokens, completion_tokens,
                    f'{first_token_latency_min:.3f}' if stream_output else '-',
                    f'{first_token_latency_max:.3f}' if stream_output else '-',
                    f'{first_token_latency_ave:.3f}' if stream_output else '-',
                    f'{completion_token_throughput:.3f}',
                    f'{total_token_throughput:.3f}', f'{rqm:.3f}'
                ])

202
203
204

def main(dataset: str,
         model_path: str,
205
206
         concurrency: int = 64,
         num_prompts: int = 2000,
207
         tp: int = 1,
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
         top_k: int = 1,
         top_p: float = 1.0,
         temperature: float = 1.0,
         stream_output: bool = True,
         csv: str = './profile_throughput.csv',
         log_level: str = 'ERROR',
         seed: int = 0):
    """Benchmark the request throughput of lmdeploy in localhost.

    Args:
        dataset (str): Path to the dataset
        model_path (str): Path to a model in localhost or a model_repo_id in huggingface.co
        concurrency (int, optional): Number of working threads to process the sampled prompts.
            Defaults to 64.
        num_prompts (int, optional): Number of prompts to process. Defaults to 2000.
        tp (int, optional): Number of GPUs for tensor parallel. Defaults to 1.
        top_k (int, optional): The number of highest probability vocabulary tokens
            to keep for top-k-filtering. Defaults to 1.
        top_p (float, optional): the set of most probable tokens with
            probabilities that add up to top_p or higher
            are kept for generation. Defaults to 1.0.
        temperature (float, optional): The value used to modulate the next token probabilities.
            Defaults to 1.0.
        stream_output (bool, optional): Indicator for streaming output. Defaults to True.
        csv (str, optional): The path to save the result.
        log_level(str, optional): The log level. Defaults to INFO
        seed (int, optional): Seed used in sampling prompts from dataset. Defaults to 0.
    """    # noqa
    random.seed(seed)
    os.environ['TM_LOG_LEVEL'] = log_level

    engine = Engine(model_path,
                    tp=tp,
                    top_k=top_k,
                    top_p=top_p,
                    temperature=temperature,
                    csv=csv)

    requests = sample_requests(dataset, num_prompts, engine.tokenizer)
247

248
    engine.process_request(requests, concurrency, stream_output)
249
250
251
252


if __name__ == '__main__':
    fire.Fire(main)