profile_throughput.py 7.08 KB
Newer Older
1
2
3
4
5
6
7
8
9
import json
import os.path as osp
import random
import time
from queue import Queue
from threading import Thread
from typing import List, Tuple

import fire
10
import numpy as np
11

12
13
from lmdeploy.tokenizer import Tokenizer
from lmdeploy.turbomind import TurboMind
14
15
16
17
18
19
20
21
22
23
24
25
26
27


def sample_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: Tokenizer,
) -> List[Tuple[str, int, int]]:
    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
    # Filter out the conversations with less than 2 turns.
    dataset = [data for data in dataset if len(data['conversations']) >= 2]
    # Only keep the first two turns of each conversation.
    dataset = [(data['conversations'][0]['value'],
28
                data['conversations'][1]['value']) for data in dataset]
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

    # Tokenize the prompts and completions.
    prompts = [prompt for prompt, _ in dataset]
    prompt_token_ids = tokenizer(prompts).input_ids
    completions = [completion for _, completion in dataset]
    completion_token_ids = tokenizer(completions).input_ids
    tokenized_dataset = []
    for i in range(len(dataset)):
        output_len = len(completion_token_ids[i])
        tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))

    # Filter out too long sequences.
    filtered_dataset: List[Tuple[str, int, int]] = []
    for prompt, prompt_token_ids, output_len in tokenized_dataset:
        prompt_len = len(prompt_token_ids)
        if prompt_len < 4 or output_len < 4:
            # Prune too short sequences.
            continue
        if prompt_len > 1024 or prompt_len + output_len > 2048:
            # Prune too long sequences.
            continue
        filtered_dataset.append((prompt, prompt_len, output_len))

    # Sample the requests.
    sampled_requests = random.sample(filtered_dataset, num_requests)
    return sampled_requests


class Engine:

59
    def __init__(self, model_path: str, tp: int = 1):
60
61
62
        tokenizer_model_path = osp.join(model_path, 'triton_models',
                                        'tokenizer')
        tokenizer = Tokenizer(tokenizer_model_path)
63
        tm_model = TurboMind(model_path=model_path, tp=tp)
64
65
66
        self.tm_model = tm_model
        self.tokenizer = tokenizer

67
68
    def _inference(self, req_queue: Queue, res_queue: Queue, session_id: int,
                   stream_output: bool):
69
        model_inst = self.tm_model.create_instance()
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        stats = []
        timestamps = []
        tokens = []
        timestamps.append(time.perf_counter())
        for prompt, input_seqlen, output_seqlen in iter(
                req_queue.get, [None, None, None]):
            input_ids = self.tokenizer.encode(prompt)
            offset = 0
            for outputs in model_inst.stream_infer(
                    session_id,
                    input_ids=input_ids,
                    request_output_len=output_seqlen,
                    temperature=1.0,
                    top_p=1.0,
                    sequence_start=True,
                    sequence_end=True,
                    ignore_eos=True,
                    stream_output=stream_output):
                res, token = outputs[0]
                self.tokenizer.decode(res, offset)
                offset = token
                timestamps.append(time.perf_counter())
                tokens.append(token)
            first_token_latency = np.round(timestamps[1] - timestamps[0], 3)
            token_latency = np.round(timestamps[-1] - timestamps[0], 3)
            completion_tokens = tokens[-1]
            total_tokens = tokens[-1] + len(input_ids)
            stats.append([
                first_token_latency, completion_tokens, output_seqlen,
                total_tokens, token_latency
            ])
            print(
                f'session {session_id}: '
                f'input_seqlen {input_seqlen}, output_seqlen {output_seqlen}, '
                f'completion_tokens {completion_tokens}')
        res_queue.put((session_id, stats))

    def process_request(self,
                        requests,
                        concurrency: int = 1,
                        stream_output: bool = True):
        res_queue = Queue()
        req_queue = Queue()
113
114
        threads = []

115
116
117
118
119
120
        # feed request to q
        for req in requests:
            req_queue.put(req)
        for i in range(concurrency):
            req_queue.put([None, None, None])

121
122
123
124
        start = time.time()

        # start threads
        for i in range(concurrency):
125
126
            t = Thread(target=self._inference,
                       args=(req_queue, res_queue, i, stream_output))
127
128
129
130
131
132
133
            t.start()
            threads.append(t)

        # wait for finish
        for t in threads:
            t.join()

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        elapsed_time = time.time() - start

        stats = []
        while not res_queue.empty():
            session_id, _stats = res_queue.get()
            print(f'\n{"-" * 50}\n'
                  f'session {session_id} stats: \n{_stats}\n{"-" * 50}\n')
            stats.append(np.array(_stats))

        stats = np.concatenate(stats).reshape(-1, 5)

        first_token_latency_min = np.min(stats[:, 0], axis=0)
        first_token_latency_max = np.max(stats[:, 0], axis=0)
        first_token_latency_ave = np.mean(stats[:, 0], axis=0)
        completion_tokens = np.sum(stats[:, 1], axis=0)
        request_output_tokens = np.sum(stats[:, 2], axis=0)
        total_tokens = np.sum(stats[:, 3], axis=0)
        prompt_tokens = total_tokens - completion_tokens
        completion_token_throughput = completion_tokens / elapsed_time
        total_token_throughput = total_tokens / elapsed_time
        rqs = len(requests) / elapsed_time
        rqm = rqs * 60

        if (np.abs(stats[:, 1] - stats[:, 2]) <= 1).min() is False:
            print(f'Did not generate requested number of tokens. '
                  f'Request {request_output_tokens:.0f}, '
                  f'but got {completion_tokens:.0f}')

        print(f'\n{"-" * 50}\nconcurrency: {concurrency}\n'
              f'elapsed_time: {elapsed_time:.3f}s\n')
        if stream_output:
            print(f'first_token latency(min, max, ave): '
                  f'{first_token_latency_min:.3f}s, '
                  f'{first_token_latency_max:.3f}s, '
                  f'{first_token_latency_ave:.3f}s\n')
        print(
            f'number of prompt tokens: {prompt_tokens:.0f}\n'
            f'number of completion tokens: {completion_tokens:.0f}\n'
            f'token throughput (completion token): {completion_token_throughput:.3f} token/s\n'  # noqa
            f'token throughput (prompt + completion token): {total_token_throughput:.3f} token/s\n'  # noqa
            f'RPS (request per second): {rqs:.3f} req/s\n'
            f'RPM (request per minute): {rqm:.3f} req/min\n'
            f'{"-" * 50}\n')
177
178
179
180
181


def main(dataset: str,
         model_path: str,
         concurrency: int = 1,
182
         num_prompts: int = 1000,
183
184
         tp: int = 1,
         stream_output: bool = True):
185

186
    engine = Engine(model_path, tp=tp)
187
188
189
190
    tokenizer = engine.tokenizer

    requests = sample_requests(dataset, num_prompts, tokenizer)

191
    engine.process_request(requests, concurrency, stream_output)
192
193
194
195


if __name__ == '__main__':
    fire.Fire(main)