mm_plugin.py 78.3 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's Transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llava/processing_llava.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

chenych's avatar
chenych committed
18
import inspect
luopl's avatar
luopl committed
19
import math
chenych's avatar
chenych committed
20
import os
luopl's avatar
luopl committed
21
import re
luopl's avatar
luopl committed
22
from copy import deepcopy
chenych's avatar
chenych committed
23
from dataclasses import dataclass
luopl's avatar
luopl committed
24
from io import BytesIO
chenych's avatar
chenych committed
25
from typing import TYPE_CHECKING, BinaryIO, Literal, Optional, TypedDict, Union
luopl's avatar
luopl committed
26
27

import numpy as np
luopl's avatar
luopl committed
28
import torch
chenych's avatar
chenych committed
29
from transformers.image_utils import get_image_size, is_valid_image, to_numpy_array
chenych's avatar
chenych committed
30
31
32
33
from transformers.models.mllama.processing_mllama import (
    convert_sparse_cross_attention_mask_to_dense,
    get_cross_attention_token_mask,
)
luopl's avatar
luopl committed
34
35
from typing_extensions import override

chenych's avatar
chenych committed
36
37
38
39
40
41
42
43
44
45
46
from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
from ..extras.packages import (
    is_librosa_available,
    is_pillow_available,
    is_pyav_available,
    is_transformers_version_greater_than,
)


if is_librosa_available():
    import librosa
luopl's avatar
luopl committed
47
48
49
50
51
52
53
54
55
56
57


if is_pillow_available():
    from PIL import Image
    from PIL.Image import Image as ImageObject


if is_pyav_available():
    import av


chenych's avatar
chenych committed
58
59
60
if is_transformers_version_greater_than("4.52.0"):
    from transformers.image_utils import make_flat_list_of_images
    from transformers.video_utils import make_batched_videos
chenych's avatar
chenych committed
61
else:
chenych's avatar
chenych committed
62
63
64
    from transformers.image_utils import make_batched_videos, make_flat_list_of_images


luopl's avatar
luopl committed
65
66
if TYPE_CHECKING:
    from av.stream import Stream
chenych's avatar
chenych committed
67
    from numpy.typing import NDArray
luopl's avatar
luopl committed
68
    from transformers import PreTrainedTokenizer, ProcessorMixin
chenych's avatar
chenych committed
69
    from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
luopl's avatar
luopl committed
70
71
72
73
74
75
    from transformers.image_processing_utils import BaseImageProcessor

    class EncodedImage(TypedDict):
        path: Optional[str]
        bytes: Optional[bytes]

chenych's avatar
chenych committed
76
    ImageInput = Union[str, bytes, EncodedImage, BinaryIO, ImageObject]
chenych's avatar
chenych committed
77
    VideoInput = Union[str, BinaryIO, list[list[ImageInput]]]
chenych's avatar
chenych committed
78
79
80
81
82
83
84
85
86
87
    AudioInput = Union[str, BinaryIO, NDArray]

    class MMProcessor(ProcessorMixin):
        patch_size: int
        image_seq_length: int
        num_additional_image_tokens: int
        vision_feature_select_strategy: Literal["default", "full"]

        def _get_number_of_features(self, orig_height: int, orig_width: int, height: int, width: int) -> int:
            pass
luopl's avatar
luopl committed
88
89


chenych's avatar
chenych committed
90
91
92
93
def _get_paligemma_token_type_ids(imglens: list[int], seqlens: list[int], processor: "MMProcessor") -> list[list[int]]:
    r"""Get paligemma token type ids for computing loss.

    It is slightly different with the original token type ids where the prompt part is 0.
luopl's avatar
luopl committed
94
95

    Returns:
chenych's avatar
chenych committed
96
97
        batch_token_type_ids: shape (batch_size, seq_length)

luopl's avatar
luopl committed
98
99
100
    """
    batch_token_type_ids = []
    for imglen, seqlen in zip(imglens, seqlens):
chenych's avatar
chenych committed
101
        image_seqlen = imglen * processor.image_seq_length
luopl's avatar
luopl committed
102
103
104
105
106
        batch_token_type_ids.append([0] * image_seqlen + [1] * (seqlen - image_seqlen))

    return batch_token_type_ids


chenych's avatar
chenych committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
def _get_gemma3_token_type_ids(batch_ids: list[list[int]], processor: "MMProcessor"):
    r"""Get gemma3 token type ids for computing loss.

    Returns:
        batch_token_type_ids: shape (batch_size, seq_length)

    """
    image_token_id: int = getattr(processor, "image_token_id")
    batch_token_type_ids = []
    for token_ids in batch_ids:
        token_ids = np.array(token_ids)
        token_type_ids = np.zeros_like(token_ids)
        token_type_ids[token_ids == image_token_id] = 1
        batch_token_type_ids.append(token_type_ids.tolist())

    return batch_token_type_ids


def _make_batched_images(images: list["ImageObject"], imglens: list[int]) -> list[list["ImageObject"]]:
    r"""Make nested list of images."""
    batch_images = []
    for imglen in imglens:
        batch_images.append(images[:imglen])
        images = images[imglen:]

    return batch_images


chenych's avatar
chenych committed
135
136
137
138
139
def _check_video_is_nested_images(video: "VideoInput") -> bool:
    r"""Check if the video is nested images."""
    return isinstance(video, list) and all(isinstance(frame, (str, BinaryIO, dict)) for frame in video)


chenych's avatar
chenych committed
140
141
142
143
144
145
@dataclass
class MMPluginMixin:
    image_token: Optional[str]
    video_token: Optional[str]
    audio_token: Optional[str]
    expand_mm_tokens: bool = True
luopl's avatar
luopl committed
146
147
148

    def _validate_input(
        self,
chenych's avatar
chenych committed
149
150
151
152
        processor: Optional["MMProcessor"],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
luopl's avatar
luopl committed
153
    ) -> None:
chenych's avatar
chenych committed
154
155
156
157
158
159
        r"""Validate if this model accepts the input modalities."""
        image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
        video_processor: BaseImageProcessor = getattr(
            processor, "video_processor", getattr(processor, "image_processor", None)
        )
        feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
luopl's avatar
luopl committed
160
        if len(images) != 0 and self.image_token is None:
luopl's avatar
luopl committed
161
162
163
            raise ValueError(
                "This model does not support image input. Please check whether the correct `template` is used."
            )
luopl's avatar
luopl committed
164
165

        if len(videos) != 0 and self.video_token is None:
luopl's avatar
luopl committed
166
167
168
            raise ValueError(
                "This model does not support video input. Please check whether the correct `template` is used."
            )
luopl's avatar
luopl committed
169

chenych's avatar
chenych committed
170
171
172
173
174
175
        if len(audios) != 0 and self.audio_token is None:
            raise ValueError(
                "This model does not support audio input. Please check whether the correct `template` is used."
            )

        if self.image_token is not None and processor is None:
chenych's avatar
chenych committed
176
            raise ValueError("Processor was not found, please check and update your model file.")
chenych's avatar
chenych committed
177
178

        if self.image_token is not None and image_processor is None:
chenych's avatar
chenych committed
179
            raise ValueError("Image processor was not found, please check and update your model file.")
chenych's avatar
chenych committed
180

chenych's avatar
chenych committed
181
        if self.video_token is not None and video_processor is None:
chenych's avatar
chenych committed
182
            raise ValueError("Video processor was not found, please check and update your model file.")
chenych's avatar
chenych committed
183

chenych's avatar
chenych committed
184
        if self.audio_token is not None and feature_extractor is None:
chenych's avatar
chenych committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
            raise ValueError("Audio feature extractor was not found, please check and update your model file.")

    def _validate_messages(
        self,
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
    ):
        r"""Validate if the number of images, videos and audios match the number of placeholders in messages."""
        num_image_tokens, num_video_tokens, num_audio_tokens = 0, 0, 0
        for message in messages:
            num_image_tokens += message["content"].count(IMAGE_PLACEHOLDER)
            num_video_tokens += message["content"].count(VIDEO_PLACEHOLDER)
            num_audio_tokens += message["content"].count(AUDIO_PLACEHOLDER)

        if len(images) != num_image_tokens:
            raise ValueError(
                f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens in {messages}."
            )

        if len(videos) != num_video_tokens:
            raise ValueError(
                f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens in {messages}."
            )

        if len(audios) != num_audio_tokens:
            raise ValueError(
                f"The number of audios does not match the number of {AUDIO_PLACEHOLDER} tokens in {messages}."
            )
chenych's avatar
chenych committed
215
216
217
218

    def _preprocess_image(
        self, image: "ImageObject", image_max_pixels: int, image_min_pixels: int, **kwargs
    ) -> "ImageObject":
chenych's avatar
chenych committed
219
        r"""Pre-process a single image."""
chenych's avatar
chenych committed
220
221
        if (image.width * image.height) > image_max_pixels:
            resize_factor = math.sqrt(image_max_pixels / (image.width * image.height))
luopl's avatar
luopl committed
222
            width, height = int(image.width * resize_factor), int(image.height * resize_factor)
chenych's avatar
chenych committed
223
224
225
226
227
228
            image = image.resize((width, height))

        if (image.width * image.height) < image_min_pixels:
            resize_factor = math.sqrt(image_min_pixels / (image.width * image.height))
            width, height = int(image.width * resize_factor), int(image.height * resize_factor)
            image = image.resize((width, height))
luopl's avatar
luopl committed
229
230
231
232
233
234

        if image.mode != "RGB":
            image = image.convert("RGB")

        return image

chenych's avatar
chenych committed
235
236
    def _get_video_sample_indices(
        self, video_stream: "Stream", video_fps: float, video_maxlen: int, **kwargs
chenych's avatar
chenych committed
237
238
    ) -> list[int]:
        r"""Compute video sample indices according to fps."""
luopl's avatar
luopl committed
239
        total_frames = video_stream.frames
chenych's avatar
chenych committed
240
241
242
        if total_frames == 0:  # infinite video
            return np.linspace(0, video_maxlen - 1, video_maxlen).astype(np.int32)

chenych's avatar
chenych committed
243
        sample_frames = max(1, math.floor(float(video_stream.duration * video_stream.time_base) * video_fps))
luopl's avatar
luopl committed
244
        sample_frames = min(total_frames, video_maxlen, sample_frames)
chenych's avatar
chenych committed
245
        return np.linspace(0, total_frames - 1, sample_frames).astype(np.int32)
luopl's avatar
luopl committed
246

chenych's avatar
chenych committed
247
248
    def _regularize_images(self, images: list["ImageInput"], **kwargs) -> dict[str, list["ImageObject"]]:
        r"""Regularize images to avoid error. Including reading and pre-processing."""
luopl's avatar
luopl committed
249
250
        results = []
        for image in images:
chenych's avatar
chenych committed
251
            if isinstance(image, (str, BinaryIO)):
luopl's avatar
luopl committed
252
                image = Image.open(image)
luopl's avatar
luopl committed
253
254
            elif isinstance(image, bytes):
                image = Image.open(BytesIO(image))
luopl's avatar
luopl committed
255
256
257
258
259
260
261
            elif isinstance(image, dict):
                if image["bytes"] is not None:
                    image = Image.open(BytesIO(image["bytes"]))
                else:
                    image = Image.open(image["path"])

            if not isinstance(image, ImageObject):
chenych's avatar
chenych committed
262
                raise ValueError(f"Expect input is a list of images, but got {type(image)}.")
luopl's avatar
luopl committed
263
264
265

            results.append(self._preprocess_image(image, **kwargs))

chenych's avatar
chenych committed
266
        return {"images": results}
luopl's avatar
luopl committed
267

chenych's avatar
chenych committed
268
269
    def _regularize_videos(self, videos: list["VideoInput"], **kwargs) -> dict[str, list[list["ImageObject"]]]:
        r"""Regularizes videos to avoid error. Including reading, resizing and converting."""
luopl's avatar
luopl committed
270
271
        results = []
        for video in videos:
chenych's avatar
chenych committed
272
            frames: list[ImageObject] = []
chenych's avatar
chenych committed
273
274
275
276
277
278
279
280
281
282
283
284
285
            if _check_video_is_nested_images(video):
                for frame in video:
                    if not is_valid_image(frame) and not isinstance(frame, dict) and not os.path.exists(frame):
                        raise ValueError("Invalid image found in video frames.")
                frames = video
            else:
                container = av.open(video, "r")
                video_stream = next(stream for stream in container.streams if stream.type == "video")
                sample_indices = self._get_video_sample_indices(video_stream, **kwargs)
                container.seek(0)
                for frame_idx, frame in enumerate(container.decode(video_stream)):
                    if frame_idx in sample_indices:
                        frames.append(frame.to_image())
luopl's avatar
luopl committed
286

chenych's avatar
chenych committed
287
            frames = self._regularize_images(frames, **kwargs)["images"]
luopl's avatar
luopl committed
288
289
            results.append(frames)

chenych's avatar
chenych committed
290
        return {"videos": results}
luopl's avatar
luopl committed
291

chenych's avatar
chenych committed
292
293
294
295
296
    def _regularize_audios(
        self, audios: list["AudioInput"], sampling_rate: float, **kwargs
    ) -> dict[str, Union[list["NDArray"], list[float]]]:
        r"""Regularizes audios to avoid error. Including reading and resampling."""
        results, sampling_rates = [], []
chenych's avatar
chenych committed
297
298
        for audio in audios:
            if not isinstance(audio, np.ndarray):
chenych's avatar
chenych committed
299
                audio, sampling_rate = librosa.load(audio, sr=sampling_rate)
chenych's avatar
chenych committed
300
301

            results.append(audio)
chenych's avatar
chenych committed
302
            sampling_rates.append(sampling_rate)
chenych's avatar
chenych committed
303

chenych's avatar
chenych committed
304
        return {"audios": results, "sampling_rates": sampling_rates}
chenych's avatar
chenych committed
305

luopl's avatar
luopl committed
306
307
    def _get_mm_inputs(
        self,
chenych's avatar
chenych committed
308
309
310
311
312
313
314
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "MMProcessor",
        imglens: Optional[list[int]] = None,
    ) -> dict[str, "torch.Tensor"]:
        r"""Process visual inputs.
luopl's avatar
luopl committed
315
316
317
318
319
320
321

        Returns: (llava and paligemma)
            pixel_values: tensor with shape (B, C, H, W)

        Returns: (qwen2-vl)
            pixel_values: tensor with shape (num_patches, patch_dim)
            image_grid_thw: tensor with shape (num_images, 3), where the three numbers are time, width, height
chenych's avatar
chenych committed
322
323
324
325
326
327
328
329
330
                            where num_patches == torch.prod(image_grid_thw)

        Returns: (mllama)
            pixel_values: tensor with shape
                          (batch_size, max_num_images, max_image_tiles, channels, tile_height, tile_width)
                          For example, (2, 1, 4, 3, 560, 560).
            aspect_ratio_ids: tensor with shape (batch_size, max_num_images). For example, (2, 1).
            aspect_ratio_mask: tensor with shape (batch_size, max_num_images, max_image_tiles). For example, (2, 1, 4).
            num_tiles: List[List[int]] with shape (batch_size, num_images_in_batch). For example, (2, 1).
luopl's avatar
luopl committed
331
332

        """
chenych's avatar
chenych committed
333
        mm_inputs = {}
luopl's avatar
luopl committed
334
        if len(images) != 0:
chenych's avatar
chenych committed
335
            image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
luopl's avatar
luopl committed
336
337
            images = self._regularize_images(
                images,
chenych's avatar
chenych committed
338
339
                image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
chenych's avatar
chenych committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
            )["images"]
            if imglens is not None:  # if imglens are provided, make batched images
                images = _make_batched_images(images, imglens)

            image_processor_kwargs = {}
            if getattr(processor, "image_do_pan_and_scan", False):  # gemma3 image processor
                image_processor_kwargs.update(
                    {
                        "do_pan_and_scan": True,
                        "pan_and_scan_min_crop_size": 256,
                        "pan_and_scan_max_num_crops": 4,
                        "pan_and_scan_min_ratio_to_activate": 1.2,
                    }
                )

            mm_inputs.update(image_processor(images, return_tensors="pt", **image_processor_kwargs))
luopl's avatar
luopl committed
356
357

        if len(videos) != 0:
chenych's avatar
chenych committed
358
359
360
            video_processor: BaseImageProcessor = getattr(
                processor, "video_processor", getattr(processor, "image_processor", None)
            )
luopl's avatar
luopl committed
361
362
            videos = self._regularize_videos(
                videos,
chenych's avatar
chenych committed
363
364
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
luopl's avatar
luopl committed
365
                video_fps=getattr(processor, "video_fps", 2.0),
chenych's avatar
chenych committed
366
                video_maxlen=getattr(processor, "video_maxlen", 128),
chenych's avatar
chenych committed
367
            )["videos"]
chenych's avatar
chenych committed
368
369
370
371
372
373
            if "videos" in inspect.signature(video_processor.preprocess).parameters:  # for qwen2_vl and video_llava
                mm_inputs.update(video_processor(images=None, videos=videos, return_tensors="pt"))
            else:  # for llava_next_video
                mm_inputs.update(video_processor(videos, return_tensors="pt"))

        if len(audios) != 0:
chenych's avatar
chenych committed
374
            feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
chenych's avatar
chenych committed
375
376
            audios = self._regularize_audios(
                audios,
chenych's avatar
chenych committed
377
378
                sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
            )["audios"]
chenych's avatar
chenych committed
379
380
381
            mm_inputs.update(
                feature_extractor(
                    audios,
chenych's avatar
chenych committed
382
                    sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
chenych's avatar
chenych committed
383
384
385
386
387
                    return_attention_mask=True,
                    padding="max_length",
                    return_tensors="pt",
                )
            )
chenych's avatar
chenych committed
388
            mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask", None)  # prevent conflicts
luopl's avatar
luopl committed
389
390
391

        return mm_inputs

chenych's avatar
chenych committed
392
393
394

@dataclass
class BasePlugin(MMPluginMixin):
luopl's avatar
luopl committed
395
396
    def process_messages(
        self,
chenych's avatar
chenych committed
397
398
399
400
401
402
403
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
        r"""Pre-process input messages before tokenization for VLMs."""
chenych's avatar
chenych committed
404
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
405
406
407
408
        return messages

    def process_token_ids(
        self,
chenych's avatar
chenych committed
409
410
411
412
413
        input_ids: list[int],
        labels: Optional[list[int]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
luopl's avatar
luopl committed
414
        tokenizer: "PreTrainedTokenizer",
chenych's avatar
chenych committed
415
416
417
        processor: Optional["MMProcessor"],
    ) -> tuple[list[int], Optional[list[int]]]:
        r"""Pre-process token ids after tokenization for VLMs."""
chenych's avatar
chenych committed
418
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
419
420
421
422
        return input_ids, labels

    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
423
424
425
426
427
428
429
430
431
432
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
        r"""Build batched multimodal inputs for VLMs.
luopl's avatar
luopl committed
433
434
435
436

        Arguments:
            images: a list of image inputs, shape (num_images,)
            videos: a list of video inputs, shape (num_videos,)
chenych's avatar
chenych committed
437
            audios: a list of audio inputs, shape (num_audios,)
luopl's avatar
luopl committed
438
439
            imglens: number of images in each sample, shape (batch_size,)
            vidlens: number of videos in each sample, shape (batch_size,)
chenych's avatar
chenych committed
440
            audlens: number of audios in each sample, shape (batch_size,)
luopl's avatar
luopl committed
441
            batch_ids: token ids of input samples, shape (batch_size, seq_len)
luopl's avatar
luopl committed
442
            processor: a processor for pre-processing images and videos
chenych's avatar
chenych committed
443

luopl's avatar
luopl committed
444
        """
chenych's avatar
chenych committed
445
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
446
        return self._get_mm_inputs(images, videos, audios, processor)
luopl's avatar
luopl committed
447
448


chenych's avatar
chenych committed
449
@dataclass
chenych's avatar
chenych committed
450
class Gemma3Plugin(BasePlugin):
luopl's avatar
luopl committed
451
452
453
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
454
455
456
457
458
459
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
460
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
461
        self._validate_messages(messages, images, videos, audios)
luopl's avatar
luopl committed
462
463
        num_image_tokens = 0
        messages = deepcopy(messages)
chenych's avatar
chenych committed
464
465
466
467
468
469
470
471
        boi_token: str = getattr(processor, "boi_token")
        full_image_sequence: str = getattr(processor, "full_image_sequence")
        image_str = full_image_sequence if self.expand_mm_tokens else boi_token

        do_pan_and_scan: bool = getattr(processor, "image_do_pan_and_scan", False)
        if do_pan_and_scan:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)

luopl's avatar
luopl committed
472
473
474
        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
chenych's avatar
chenych committed
475
476
477
478
479
480
481
482
483
                if do_pan_and_scan:
                    image_placeholder_str = (
                        "Here is the original image {{image}} and here are some crops to help you see better "
                        + " ".join(["{{image}}"] * mm_inputs["num_crops"][0][num_image_tokens])
                    )
                else:
                    image_placeholder_str = "{{image}}"

                content = content.replace(IMAGE_PLACEHOLDER, image_placeholder_str, 1)
luopl's avatar
luopl committed
484
                num_image_tokens += 1
luopl's avatar
luopl committed
485

chenych's avatar
chenych committed
486
            message["content"] = content.replace("{{image}}", image_str)
luopl's avatar
luopl committed
487
488
489
490
491
492

        return messages

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
493
494
495
496
497
498
499
500
501
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
502
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
503
504
505
506
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
        mm_inputs.pop("num_crops", None)
        mm_inputs["token_type_ids"] = _get_gemma3_token_type_ids(batch_ids, processor)
        return mm_inputs
luopl's avatar
luopl committed
507
508


chenych's avatar
chenych committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
class Gemma3nPlugin(Gemma3Plugin):
    @override
    def process_messages(
        self,
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
        self._validate_input(processor, images, videos, audios)
        self._validate_messages(messages, images, videos, audios)
        messages = deepcopy(messages)
        boi_token: str = getattr(processor, "boi_token")
        boa_token: str = getattr(processor, "boa_token")
        full_image_sequence: str = getattr(processor, "full_image_sequence")
        full_audio_sequence: str = getattr(processor, "full_audio_sequence")
        image_str = full_image_sequence if self.expand_mm_tokens else boi_token
        audio_str = full_audio_sequence if self.expand_mm_tokens else boa_token

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                content = content.replace(IMAGE_PLACEHOLDER, image_str, 1)

            while AUDIO_PLACEHOLDER in content:
                content = content.replace(AUDIO_PLACEHOLDER, audio_str, 1)

            message["content"] = content

        return messages


chenych's avatar
chenych committed
542
@dataclass
chenych's avatar
chenych committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
class InternVLPlugin(BasePlugin):
    @override
    def _get_mm_inputs(
        self,
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "ProcessorMixin",
        **kwargs,
    ) -> dict[str, "torch.Tensor"]:
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
        image_processor_kwargs = {}
        if getattr(processor, "crop_to_patches", False):
            image_processor_kwargs.update(
                {
                    "crop_to_patches": True,
                    "max_patches": 12,
                    "min_patches": 1,
                }
            )

        mm_inputs = {}
        image_video_patches = []

chenych's avatar
chenych committed
567
        if len(images) != 0:
chenych's avatar
chenych committed
568
569
570
571
572
573
            images = self._regularize_images(
                images,
                image_max_pixels=getattr(processor, "image_max_pixels", 1024 * 1024),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
            )["images"]

chenych's avatar
chenych committed
574
        if len(videos) != 0:
chenych's avatar
chenych committed
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
            videos = self._regularize_videos(
                videos,
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
                video_fps=getattr(processor, "video_fps", 2.0),
                video_maxlen=getattr(processor, "video_maxlen", 128),
            )["videos"]

        if len(images) != 0:
            images = make_flat_list_of_images(images)
            image_inputs = image_processor(images=images, return_tensors="pt", **image_processor_kwargs)
            image_num_patches = image_inputs.pop("num_patches")
            image_pixel_values = image_inputs.pop("pixel_values")
            image_num_patches_indices = np.cumsum(image_num_patches)

        if len(videos) != 0:
            videos = make_batched_videos(videos)
            num_frames_per_video = [len(video) for video in videos]
            patch_indices = np.cumsum(num_frames_per_video)
            image_processor_kwargs["crop_to_patches"] = False
            video_inputs = image_processor(images=videos, return_tensors="pt", **image_processor_kwargs)
            video_num_patches = video_inputs.pop("num_patches")
            video_pixel_values = video_inputs.pop("pixel_values")
            video_num_patches_indices = np.cumsum(video_num_patches)

        # NOT SUPPORT IMAGE VIDEO INTERLEAVED
        if len(images) != 0 and image_pixel_values is not None:
            for i in range(len(images)):
                start_index = image_num_patches_indices[i - 1] if i > 0 else 0
                end_index = image_num_patches_indices[i]
                image_video_patches.append(image_pixel_values[start_index:end_index])

        if len(videos) != 0 and video_pixel_values is not None:
            patch_indices_with_prefix = [0] + list(patch_indices)
            for i in range(len(videos)):
                current_patch_index = patch_indices_with_prefix[i]
                end_patch_index = patch_indices_with_prefix[i + 1]
                start_index = video_num_patches_indices[current_patch_index - 1] if i > 0 else 0
                end_index = video_num_patches_indices[end_patch_index - 1]
                image_video_patches.append(video_pixel_values[start_index:end_index])

        if len(images) != 0 or len(videos) != 0:
            mm_inputs["pixel_values"] = torch.cat(image_video_patches, dim=0)

        if len(images) != 0:
            mm_inputs.update({"image_num_patches": image_num_patches})

        if len(videos) != 0:
            mm_inputs.update({"video_patch_indices": patch_indices})
            mm_inputs.update({"video_num_patches": video_num_patches})

        return mm_inputs

    @override
    def process_messages(
        self,
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["ProcessorMixin"],
    ) -> list[dict[str, str]]:
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
638
639
        self._validate_messages(messages, images, videos, audios)
        num_image_tokens, num_video_tokens = 0, 0
chenych's avatar
chenych committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
        image_seqlen = getattr(processor, "image_seq_length") if self.expand_mm_tokens else 1
        messages = deepcopy(messages)
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)

        image_pixel_patch_list = mm_inputs.get("image_num_patches")  # pathes of images
        video_num_patches = mm_inputs.get("video_num_patches")  # all patches for frames of videos
        video_patch_indices = mm_inputs.get("video_patch_indices")  # num frames of per video

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                content = content.replace(
                    IMAGE_PLACEHOLDER,
                    f"<img>{'<IMG_CONTEXT>' * image_seqlen * image_pixel_patch_list[num_image_tokens]}</img>",
                    1,
                )
                num_image_tokens += 1

            while VIDEO_PLACEHOLDER in content:
                current_patch_index = video_patch_indices[num_video_tokens - 1] if num_video_tokens > 0 else 0
                end_patch_index = video_patch_indices[num_video_tokens]
                num_patches = list(video_num_patches[current_patch_index:end_patch_index])
                video_replaced_prompt = "\n".join(
                    f"Frame{i + 1}: <img>{'<IMG_CONTEXT>' * image_seqlen * num_patches[i]}</img>"
                    for i in range(len(num_patches))
                )
                content = content.replace(VIDEO_PLACEHOLDER, video_replaced_prompt, 1)
                num_video_tokens += 1

            message["content"] = content

        return messages

    @override
    def get_mm_inputs(
        self,
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["ProcessorMixin"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
        self._validate_input(processor, images, videos, audios)
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
        mm_inputs.pop("image_num_patches", None)
        mm_inputs.pop("video_patch_indices", None)
        mm_inputs.pop("video_num_patches", None)
        return mm_inputs


chenych's avatar
chenych committed
693
694
695
696
class KimiVLPlugin(BasePlugin):
    @override
    def process_messages(self, messages, images, videos, audios, processor):
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
697
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
698
699
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
chenych's avatar
chenych committed
700
701
702
            image_grid_hws = mm_inputs.get("image_grid_hws", [])
        else:
            image_grid_hws = [None] * len(images)
chenych's avatar
chenych committed
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

        num_image_tokens = 0
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
        merge_length = math.prod(image_processor.merge_kernel_size)
        messages = deepcopy(messages)
        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                image_seqlen = image_grid_hws[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
                content = content.replace(
                    IMAGE_PLACEHOLDER,
                    f"<|media_start|>image<|media_content|>{self.image_token * image_seqlen}<|media_end|>",
                    1,
                )
                num_image_tokens += 1

            message["content"] = content

        return messages


chenych's avatar
chenych committed
724
@dataclass
chenych's avatar
chenych committed
725
class Llama4Plugin(BasePlugin):
luopl's avatar
luopl committed
726
727
728
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
729
730
731
732
733
734
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
735
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
736
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
737
738
739
740
741
742
743
744
745
746
747
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                image_height, image_width = mm_inputs["pixel_values"][0].shape[-2:]
                num_patches_per_chunk = int(
                    (image_height // processor.patch_size)
                    * (image_width // processor.patch_size)
                    // processor.downsample_ratio
                )
                aspect_ratios = mm_inputs.pop("aspect_ratios")

luopl's avatar
luopl committed
748
749
        num_image_tokens = 0
        messages = deepcopy(messages)
chenych's avatar
chenych committed
750
751
752
        for message in messages:
            content = message["content"]
            if self.expand_mm_tokens:
chenych's avatar
chenych committed
753
                placeholder_count = content.count(IMAGE_PLACEHOLDER)
chenych's avatar
chenych committed
754
755
756
757
758
759
760
761
762
763
764
765
                prompt_splits = content.split(IMAGE_PLACEHOLDER)
                new_content = []
                for local_image_index, split_part in enumerate(prompt_splits):
                    new_content.append(split_part)
                    if local_image_index < placeholder_count:
                        tokens_for_this_image = processor._prompt_split_image(
                            aspect_ratios[num_image_tokens], num_patches_per_chunk
                        )
                        num_image_tokens += 1
                        new_content.append(tokens_for_this_image)

                content = "".join(new_content)
chenych's avatar
chenych committed
766
767
            else:
                content = content.replace(IMAGE_PLACEHOLDER, self.image_token)
chenych's avatar
chenych committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785

            message["content"] = content

        return messages

    @override
    def get_mm_inputs(
        self,
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
786
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
chenych's avatar
chenych committed
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
        mm_inputs.pop("aspect_ratios", None)
        return mm_inputs


@dataclass
class LlavaPlugin(BasePlugin):
    @override
    def process_messages(
        self,
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
803
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
        messages = deepcopy(messages)
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0]))
                image_seqlen = (height // processor.patch_size) * (
                    width // processor.patch_size
                ) + processor.num_additional_image_tokens
                if processor.vision_feature_select_strategy == "default":
                    image_seqlen -= 1
        else:
            image_seqlen = 1

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)

            message["content"] = content.replace("{{image}}", self.image_token)

        return messages


@dataclass
class LlavaNextPlugin(BasePlugin):
    @override
    def process_messages(
        self,
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
839
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
840
841
842
843
844
845
846
        num_image_tokens = 0
        messages = deepcopy(messages)
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                image_sizes = iter(mm_inputs["image_sizes"].tolist())
                height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0]))
luopl's avatar
luopl committed
847

luopl's avatar
luopl committed
848
849
        for message in messages:
            content = message["content"]
luopl's avatar
luopl committed
850
            while IMAGE_PLACEHOLDER in content:
luopl's avatar
luopl committed
851
852
853
                if self.expand_mm_tokens:
                    orig_height, orig_width = next(image_sizes)
                    image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width)
chenych's avatar
chenych committed
854
                    if processor.vision_feature_select_strategy == "default":
luopl's avatar
luopl committed
855
856
857
                        image_seqlen -= 1
                else:
                    image_seqlen = 1
luopl's avatar
luopl committed
858
859

                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)
luopl's avatar
luopl committed
860
                num_image_tokens += 1
luopl's avatar
luopl committed
861
862
863
864
865
866

            message["content"] = content.replace("{{image}}", self.image_token)

        return messages


chenych's avatar
chenych committed
867
@dataclass
luopl's avatar
luopl committed
868
869
870
871
class LlavaNextVideoPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
872
873
874
875
876
877
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
878
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
879
        self._validate_messages(messages, images, videos, audios)
luopl's avatar
luopl committed
880
        messages = deepcopy(messages)
chenych's avatar
chenych committed
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                image_sizes = iter(mm_inputs["image_sizes"].tolist())
                height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0]))

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                if self.expand_mm_tokens:
                    orig_height, orig_width = next(image_sizes)
                    image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width)
                    if processor.vision_feature_select_strategy == "default":
                        image_seqlen -= 1
                else:
                    image_seqlen = 1

                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)

            message["content"] = content.replace("{{image}}", self.image_token)

        if self.expand_mm_tokens:
            if "pixel_values_videos" in mm_inputs:
                one_video = to_numpy_array(mm_inputs.get("pixel_values_videos")[0])
                height, width = get_image_size(one_video[0])
                num_frames = one_video.shape[0]  # frame dim is always after batch dim
chenych's avatar
chenych committed
907
908
                image_seqlen = (height // processor.patch_size) * (width // processor.patch_size)
                video_seqlen = image_seqlen // 4 * num_frames  # divide by 4 needed for avg pooling layer
chenych's avatar
chenych committed
909
910
        else:
            video_seqlen = 1
chenych's avatar
chenych committed
911

chenych's avatar
chenych committed
912
913
914
915
        for message in messages:
            content = message["content"]
            while VIDEO_PLACEHOLDER in content:
                content = content.replace(VIDEO_PLACEHOLDER, "{{video}}" * video_seqlen, 1)
luopl's avatar
luopl committed
916

chenych's avatar
chenych committed
917
            message["content"] = content.replace("{{video}}", self.video_token)
luopl's avatar
luopl committed
918
919
920
921

        return messages


chenych's avatar
chenych committed
922
@dataclass
luopl's avatar
luopl committed
923
class MiniCPMVPlugin(BasePlugin):
chenych's avatar
chenych committed
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
    @override
    def _get_mm_inputs(
        self,
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "MMProcessor",
        **kwargs,
    ) -> dict[str, "torch.Tensor"]:
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
        mm_inputs = {}
        if len(images) != 0:
            images = self._regularize_images(
                images,
                image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
            )["images"]
            if "valid_image_nums_ls" in kwargs:
                valid_image_nums_ls = kwargs["valid_image_nums_ls"]
                new_images = []
                idx = 0
                for valid_image_nums in valid_image_nums_ls:
                    new_images.append(images[idx : idx + valid_image_nums])
                    idx += valid_image_nums

                images = new_images

            image_inputs = image_processor(
                images, do_pad=True, max_slice_nums=image_processor.max_slice_nums, return_tensors="pt"
            )
            mm_inputs.update(image_inputs)

        if len(videos) != 0:
            videos = self._regularize_videos(
                videos,
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
                video_fps=getattr(processor, "video_fps", 2.0),
                video_maxlen=getattr(processor, "video_maxlen", 128),
            )["videos"]
            video_inputs = image_processor(videos, do_pad=True, max_slice_nums=2, return_tensors="pt")
            mm_inputs.update(video_inputs)

        if len(audios) != 0:
            audios = self._regularize_audios(
                audios,
                sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
            )["audios"]
            if "valid_audio_nums_ls" in kwargs:
                valid_audio_nums_ls = kwargs["valid_audio_nums_ls"]
                audios_ls = []
                idx = 0
                for valid_audio_nums in valid_audio_nums_ls:
                    audios_ls.append(audios[idx : idx + valid_audio_nums])
                    idx += valid_audio_nums
            else:
                audios_ls = [audios]

            audio_features, audio_feature_lens, audio_phs = processor.audio_feature_extract(
                audios_ls,
                chunk_input=True,
                sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
            )
            audio_feature_lens = [torch.tensor(audio_feature_len) for audio_feature_len in audio_feature_lens]
            mm_inputs.update({"audio_features": audio_features, "audio_feature_lens": audio_feature_lens})
            if kwargs.get("ret_phs", False):
                mm_inputs.update({"audio_phs": audio_phs})

        return mm_inputs

luopl's avatar
luopl committed
994
995
996
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
997
998
999
1000
1001
1002
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1003
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
1004
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
1005
        num_image_tokens, num_video_tokens, num_audio_tokens = 0, 0, 0
luopl's avatar
luopl committed
1006
        messages = deepcopy(messages)
chenych's avatar
chenych committed
1007
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
chenych's avatar
chenych committed
1008
        mm_inputs, audio_inputs = {}, {}
luopl's avatar
luopl committed
1009
1010
1011
1012
1013
1014
        if len(images) != 0 and len(videos) != 0:
            raise ValueError("MiniCPM-V model does not support input images and videos at the same time.")

        if len(videos) != 0:
            max_slice_nums = 2
            use_image_id = False
chenych's avatar
chenych committed
1015
            mm_inputs = self._get_mm_inputs([], videos, [], processor)
luopl's avatar
luopl committed
1016
1017
1018
1019
        else:
            max_slice_nums = image_processor.max_slice_nums
            use_image_id = image_processor.use_image_id

chenych's avatar
chenych committed
1020
        for i, message in enumerate(messages):
luopl's avatar
luopl committed
1021
1022
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
luopl's avatar
luopl committed
1023
                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
luopl's avatar
luopl committed
1024
                num_image_tokens += 1
luopl's avatar
luopl committed
1025
1026
1027
1028
1029
1030

            while VIDEO_PLACEHOLDER in content:
                video_seqlen = len(mm_inputs["pixel_values"][num_video_tokens]) if self.expand_mm_tokens else 1
                content = content.replace(VIDEO_PLACEHOLDER, "{{image}}" * video_seqlen, 1)
                num_video_tokens += 1

chenych's avatar
chenych committed
1031
1032
1033
1034
1035
1036
1037
            while AUDIO_PLACEHOLDER in content:
                content = content.replace(AUDIO_PLACEHOLDER, "{{audio}}", 1)
                num_audio_tokens += 1

            message["content"] = content.replace("{{image}}", "(<image>./</image>)").replace(
                "{{audio}}", "(<audio>./</audio>)"
            )
luopl's avatar
luopl committed
1038

chenych's avatar
chenych committed
1039
        if len(images):
chenych's avatar
chenych committed
1040
1041
            mm_inputs = self._get_mm_inputs(images, [], [], processor)

chenych's avatar
chenych committed
1042
        if len(audios):
chenych's avatar
chenych committed
1043
            audio_inputs = self._get_mm_inputs([], [], audios, processor, ret_phs=True)
luopl's avatar
luopl committed
1044

chenych's avatar
chenych committed
1045
        if self.expand_mm_tokens and mm_inputs:
luopl's avatar
luopl committed
1046
1047
            pattern = "(<image>./</image>)"
            image_sizes = mm_inputs["image_sizes"]
chenych's avatar
chenych committed
1048
            idx = 0
luopl's avatar
luopl committed
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
            for index, message in enumerate(messages):
                text = message["content"]
                image_tags = re.findall(pattern, text)
                text_chunks = text.split(pattern)
                final_text = ""
                for i in range(len(image_tags)):
                    final_text = (
                        final_text
                        + text_chunks[i]
                        + image_processor.get_slice_image_placeholder(
chenych's avatar
chenych committed
1059
                            image_sizes[0][idx], idx, max_slice_nums, use_image_id
luopl's avatar
luopl committed
1060
1061
                        )
                    )
chenych's avatar
chenych committed
1062
1063
1064
1065
1066
                    idx += 1

                final_text += text_chunks[-1]
                messages[index]["content"] = final_text

chenych's avatar
chenych committed
1067
        if self.expand_mm_tokens and audio_inputs:
chenych's avatar
chenych committed
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
            pattern = "(<audio>./</audio>)"
            idx = 0
            for index, message in enumerate(messages):
                text = message["content"]
                audio_tags = re.findall(pattern, text)
                text_chunks = text.split(pattern)
                final_text = ""
                for i in range(len(audio_tags)):
                    audio_placeholder = audio_inputs["audio_phs"][0][idx]
                    final_text = final_text + text_chunks[i] + audio_placeholder
                    idx += 1
luopl's avatar
luopl committed
1079
1080
1081
1082
1083
1084
1085
1086
1087

                final_text += text_chunks[-1]
                messages[index]["content"] = final_text

        return messages

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1088
1089
1090
1091
1092
1093
1094
1095
1096
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1097
1098
        self._validate_input(processor, images, videos, audios)
        # image bound
luopl's avatar
luopl committed
1099
1100
        image_bounds_list = []
        valid_image_nums_ls = []
chenych's avatar
chenych committed
1101
        for i, input_ids in enumerate(batch_ids):
luopl's avatar
luopl committed
1102
1103
1104
1105
1106
1107
1108
1109
            input_ids_ = torch.tensor(input_ids)
            start_cond = (input_ids_ == processor.tokenizer.im_start_id) | (
                input_ids_ == processor.tokenizer.slice_start_id
            )
            end_cond = (input_ids_ == processor.tokenizer.im_end_id) | (input_ids_ == processor.tokenizer.slice_end_id)
            image_start_tokens = torch.where(start_cond)[0]
            image_start_tokens += 1
            image_end_tokens = torch.where(end_cond)[0]
chenych's avatar
chenych committed
1110
            valid_image_nums_ls.append(imglens[i])
luopl's avatar
luopl committed
1111
1112
            image_bounds = torch.hstack(
                [
chenych's avatar
chenych committed
1113
1114
                    image_start_tokens.unsqueeze(-1),
                    image_end_tokens.unsqueeze(-1),
luopl's avatar
luopl committed
1115
1116
1117
1118
                ]
            )
            image_bounds_list.append(image_bounds)

chenych's avatar
chenych committed
1119
1120
1121
1122
1123
        mm_inputs = self._get_mm_inputs(images, videos, [], processor, valid_image_nums_ls=valid_image_nums_ls)
        if "tgt_sizes" not in mm_inputs:
            dummy_data = [torch.empty(0) for _ in range(len(batch_ids))]
            mm_inputs.update({"tgt_sizes": dummy_data, "pixel_values": dummy_data, "image_sizes": dummy_data})

luopl's avatar
luopl committed
1124
        mm_inputs.update({"image_bound": image_bounds_list})
chenych's avatar
chenych committed
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

        if len(audios) > 0:
            # audio bound
            audio_bounds_ls = []
            spk_bounds_ls = []
            valid_audio_nums_ls = []

            for input_ids, audiolen in zip(batch_ids, audlens):
                input_ids_ = torch.tensor(input_ids)
                audio_start_idx = torch.where(input_ids_ == processor.tokenizer.audio_start_id)[0]
                audio_end_idx = torch.where(input_ids_ == processor.tokenizer.audio_end_id)[0]
                assert len(audio_start_idx) == len(audio_end_idx)
                audio_bounds = torch.hstack([(audio_start_idx + 1).unsqueeze(-1), audio_end_idx.unsqueeze(-1)])
                audio_bounds_ls.append(audio_bounds)
                valid_audio_nums_ls.append(audiolen)

                spk_start_idx = torch.where(input_ids_ == processor.tokenizer.spk_start_id)[0]
                spk_end_idx = torch.where(input_ids_ == processor.tokenizer.spk_end_id)[0]
                assert len(spk_start_idx) == len(spk_end_idx)
                spk_bounds = torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
                spk_bounds_ls.append(spk_bounds)

            audio_inputs = self._get_mm_inputs([], [], audios, processor, valid_audio_nums_ls=valid_audio_nums_ls)
            mm_inputs.update(audio_inputs)
            mm_inputs.update({"audio_bounds": audio_bounds_ls, "spk_bounds": spk_bounds_ls})

luopl's avatar
luopl committed
1151
1152
1153
        return mm_inputs


chenych's avatar
chenych committed
1154
@dataclass
luopl's avatar
luopl committed
1155
1156
1157
1158
class MllamaPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1159
1160
1161
1162
1163
1164
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1165
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
1166
        self._validate_messages(messages, images, videos, audios)
luopl's avatar
luopl committed
1167
1168
1169
1170
1171
1172
1173
1174
1175
        num_image_tokens = 0
        messages = deepcopy(messages)
        for message in messages:
            content = message["content"]
            num_image_tokens += content.count(IMAGE_PLACEHOLDER)
            message["content"] = content.replace(IMAGE_PLACEHOLDER, self.image_token)

        return messages

chenych's avatar
chenych committed
1176
    @override
luopl's avatar
luopl committed
1177
1178
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1179
1180
1181
1182
1183
1184
1185
1186
1187
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1188
1189
1190
1191
        self._validate_input(processor, images, videos, audios)
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor, imglens)
        if mm_inputs:
            num_tiles = mm_inputs.pop("num_tiles")
chenych's avatar
chenych committed
1192
1193
            image_token_id: int = getattr(processor, "image_token_id")
            max_image_tiles: int = getattr(processor.image_processor, "max_image_tiles")
chenych's avatar
chenych committed
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
            cross_attention_token_mask = [
                get_cross_attention_token_mask(input_ids, image_token_id) for input_ids in batch_ids
            ]
            mm_inputs["cross_attention_mask"] = torch.from_numpy(
                convert_sparse_cross_attention_mask_to_dense(
                    cross_attention_token_mask,
                    num_tiles=num_tiles,
                    max_num_tiles=max_image_tiles,
                    length=max(len(input_ids) for input_ids in batch_ids),
                )
            )  # shape: (batch_size, length, max_num_images, max_num_tiles)

luopl's avatar
luopl committed
1206
1207
1208
        return mm_inputs


chenych's avatar
chenych committed
1209
@dataclass
luopl's avatar
luopl committed
1210
1211
1212
1213
class PaliGemmaPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1214
1215
1216
1217
1218
1219
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1220
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
1221
        self._validate_messages(messages, images, videos, audios)
luopl's avatar
luopl committed
1222
1223
1224
1225
1226
        num_image_tokens = 0
        messages = deepcopy(messages)
        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
chenych's avatar
chenych committed
1227
                content = content.replace(IMAGE_PLACEHOLDER, "", 1)
luopl's avatar
luopl committed
1228
                num_image_tokens += 1
luopl's avatar
luopl committed
1229

chenych's avatar
chenych committed
1230
            message["content"] = content
luopl's avatar
luopl committed
1231
1232
1233
1234
1235
1236

        return messages

    @override
    def process_token_ids(
        self,
chenych's avatar
chenych committed
1237
1238
1239
1240
1241
        input_ids: list[int],
        labels: Optional[list[int]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
luopl's avatar
luopl committed
1242
        tokenizer: "PreTrainedTokenizer",
chenych's avatar
chenych committed
1243
1244
        processor: Optional["MMProcessor"],
    ) -> tuple[list[int], Optional[list[int]]]:
chenych's avatar
chenych committed
1245
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
1246
        num_images = len(images)
chenych's avatar
chenych committed
1247
        image_seqlen = processor.image_seq_length if self.expand_mm_tokens else 0  # skip mm token
luopl's avatar
luopl committed
1248
        image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
chenych's avatar
chenych committed
1249
        input_ids = [image_token_id] * num_images * image_seqlen + input_ids
luopl's avatar
luopl committed
1250
        if labels is not None:
chenych's avatar
chenych committed
1251
            labels = [IGNORE_INDEX] * num_images * image_seqlen + labels
luopl's avatar
luopl committed
1252
1253
1254
1255
1256
1257

        return input_ids, labels

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1258
1259
1260
1261
1262
1263
1264
1265
1266
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1267
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
1268
        seqlens = [len(input_ids) for input_ids in batch_ids]
chenych's avatar
chenych committed
1269
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
luopl's avatar
luopl committed
1270
1271
1272
1273
        mm_inputs["token_type_ids"] = _get_paligemma_token_type_ids(imglens, seqlens, processor)
        return mm_inputs


chenych's avatar
chenych committed
1274
@dataclass
luopl's avatar
luopl committed
1275
1276
1277
1278
class PixtralPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1279
1280
1281
1282
1283
1284
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1285
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
1286
        self._validate_messages(messages, images, videos, audios)
luopl's avatar
luopl committed
1287
        messages = deepcopy(messages)
chenych's avatar
chenych committed
1288
1289
1290
1291
1292
1293
1294
1295
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                # BC for transformers < 4.49.0
                if isinstance(mm_inputs["image_sizes"], list):
                    image_sizes = iter(mm_inputs["image_sizes"][0])
                else:
                    image_sizes = iter(mm_inputs["image_sizes"].tolist())
chenych's avatar
chenych committed
1296

chenych's avatar
chenych committed
1297
1298
                image_break_token: str = getattr(processor, "image_break_token")
                image_end_token: str = getattr(processor, "image_end_token")
chenych's avatar
chenych committed
1299

luopl's avatar
luopl committed
1300
1301
1302
        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
luopl's avatar
luopl committed
1303
                if self.expand_mm_tokens:
chenych's avatar
chenych committed
1304
                    patch_size = processor.patch_size * getattr(processor, "spatial_merge_size", 1)
chenych's avatar
chenych committed
1305
                    height, width = next(image_sizes)
chenych's avatar
chenych committed
1306
1307
                    num_height_tokens = height // patch_size
                    num_width_tokens = width // patch_size
chenych's avatar
chenych committed
1308
                    replace_tokens = [[self.image_token] * num_width_tokens + [image_break_token]] * num_height_tokens
luopl's avatar
luopl committed
1309
1310
1311
1312
                    replace_tokens = [item for sublist in replace_tokens for item in sublist]  # flatten list
                    replace_tokens[-1] = image_end_token
                    replace_str = "".join(replace_tokens)
                else:
chenych's avatar
chenych committed
1313
                    replace_str = self.image_token
luopl's avatar
luopl committed
1314

luopl's avatar
luopl committed
1315
1316
1317
1318
1319
1320
1321
1322
1323
                content = content.replace(IMAGE_PLACEHOLDER, replace_str, 1)

            message["content"] = content

        return messages

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1324
1325
1326
1327
1328
1329
1330
1331
1332
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1333
1334
        self._validate_input(processor, images, videos, audios)
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
chenych's avatar
chenych committed
1335
1336
1337
1338
1339
        # ref to this commit https://github.com/huggingface/transformers/pull/35122
        # after transformers 4.49.0, the `image_sizes` is mandatory as an input parameter for Pixtral VisionEncoder forwarding.
        # it can be passed into `LlavaConditionalGeneration` as a parameter.
        if not is_transformers_version_greater_than("4.49.0"):
            mm_inputs.pop("image_sizes", None)
luopl's avatar
luopl committed
1340
1341
1342
        return mm_inputs


chenych's avatar
chenych committed
1343
1344
1345
1346
1347
@dataclass
class Qwen2AudioPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1348
1349
1350
1351
1352
1353
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1354
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
1355
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
1356
1357
1358
        bos_token: str = getattr(processor, "audio_bos_token")
        eos_token: str = getattr(processor, "audio_eos_token")
        messages = deepcopy(messages)
chenych's avatar
chenych committed
1359
1360
1361
1362
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs([], [], audios, processor)
            if "feature_attention_mask" in mm_inputs:
                audio_lengths = mm_inputs["feature_attention_mask"].sum(-1).tolist()
chenych's avatar
chenych committed
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384

        for message in messages:
            content = message["content"]
            while AUDIO_PLACEHOLDER in content:
                if self.expand_mm_tokens:
                    audio_length = audio_lengths.pop(0)
                    input_length = (audio_length - 1) // 2 + 1
                    audio_seqlen = (input_length - 2) // 2 + 1
                else:
                    audio_seqlen = 1

                content = content.replace(
                    AUDIO_PLACEHOLDER, f"{bos_token}{self.audio_token * audio_seqlen}{eos_token}", 1
                )

            message["content"] = content

        return messages

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1385
1386
1387
1388
1389
1390
1391
1392
1393
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1394
1395
1396
1397
1398
1399
        self._validate_input(processor, images, videos, audios)
        return self._get_mm_inputs(images, videos, audios, processor)


@dataclass
class Qwen2VLPlugin(BasePlugin):
luopl's avatar
luopl committed
1400
1401
1402
1403
1404
    @override
    def _preprocess_image(self, image: "ImageObject", **kwargs) -> "ImageObject":
        image = super()._preprocess_image(image, **kwargs)
        if min(image.width, image.height) < 28:
            width, height = max(image.width, 28), max(image.height, 28)
chenych's avatar
chenych committed
1405
            image = image.resize((width, height))
luopl's avatar
luopl committed
1406
1407
1408

        if image.width / image.height > 200:
            width, height = image.height * 180, image.height
chenych's avatar
chenych committed
1409
            image = image.resize((width, height))
luopl's avatar
luopl committed
1410
1411
1412

        if image.height / image.width > 200:
            width, height = image.width, image.width * 180
chenych's avatar
chenych committed
1413
            image = image.resize((width, height))
luopl's avatar
luopl committed
1414
1415
1416
1417

        return image

    @override
chenych's avatar
chenych committed
1418
    def _regularize_videos(
chenych's avatar
chenych committed
1419
1420
        self, videos: list["VideoInput"], **kwargs
    ) -> dict[str, Union[list[list["ImageObject"]], list[float]]]:
chenych's avatar
chenych committed
1421
        results, fps_per_video = [], []
luopl's avatar
luopl committed
1422
        for video in videos:
chenych's avatar
chenych committed
1423
            frames: list[ImageObject] = []
chenych's avatar
chenych committed
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
            if _check_video_is_nested_images(video):
                for frame in video:
                    if not is_valid_image(frame) and not isinstance(frame, dict) and not os.path.exists(frame):
                        raise ValueError("Invalid image found in video frames.")

                frames = video
                fps_per_video.append(kwargs.get("video_fps", 2.0))
            else:
                container = av.open(video, "r")
                video_stream = next(stream for stream in container.streams if stream.type == "video")
                sample_indices = self._get_video_sample_indices(video_stream, **kwargs)
                container.seek(0)
                for frame_idx, frame in enumerate(container.decode(video_stream)):
                    if frame_idx in sample_indices:
                        frames.append(frame.to_image())

                if video_stream.duration is None:
                    fps_per_video.append(kwargs.get("video_fps", 2.0))
                else:
                    fps_per_video.append(len(sample_indices) / float(video_stream.duration * video_stream.time_base))
luopl's avatar
luopl committed
1444

chenych's avatar
chenych committed
1445
            if len(frames) % 2 != 0:
luopl's avatar
luopl committed
1446
1447
                frames.append(frames[-1])

chenych's avatar
chenych committed
1448
            frames = self._regularize_images(frames, **kwargs)["images"]
luopl's avatar
luopl committed
1449
1450
            results.append(frames)

chenych's avatar
chenych committed
1451
        return {"videos": results, "fps_per_video": fps_per_video}
chenych's avatar
chenych committed
1452
1453
1454
1455

    @override
    def _get_mm_inputs(
        self,
chenych's avatar
chenych committed
1456
1457
1458
1459
1460
1461
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "MMProcessor",
    ) -> dict[str, "torch.Tensor"]:
        image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
chenych's avatar
chenych committed
1462
1463
1464
1465
1466
1467
        mm_inputs = {}
        if len(images) != 0:
            images = self._regularize_images(
                images,
                image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
chenych's avatar
chenych committed
1468
            )["images"]
chenych's avatar
chenych committed
1469
1470
1471
            mm_inputs.update(image_processor(images, return_tensors="pt"))

        if len(videos) != 0:
chenych's avatar
chenych committed
1472
            video_data = self._regularize_videos(
chenych's avatar
chenych committed
1473
1474
1475
1476
1477
1478
                videos,
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
                video_fps=getattr(processor, "video_fps", 2.0),
                video_maxlen=getattr(processor, "video_maxlen", 128),
            )
chenych's avatar
chenych committed
1479
1480
1481
1482
            mm_inputs.update(image_processor(images=None, videos=video_data["videos"], return_tensors="pt"))
            temporal_patch_size: int = getattr(image_processor, "temporal_patch_size", 2)
            if "second_per_grid_ts" in processor.model_input_names:
                mm_inputs["second_per_grid_ts"] = [temporal_patch_size / fps for fps in video_data["fps_per_video"]]
chenych's avatar
chenych committed
1483
1484

        return mm_inputs
luopl's avatar
luopl committed
1485
1486
1487
1488

    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1489
1490
1491
1492
1493
1494
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1495
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
1496
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
1497
1498
        num_image_tokens, num_video_tokens = 0, 0
        messages = deepcopy(messages)
chenych's avatar
chenych committed
1499
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
chenych's avatar
chenych committed
1500

luopl's avatar
luopl committed
1501
        merge_length: int = getattr(image_processor, "merge_size") ** 2
chenych's avatar
chenych committed
1502
1503
1504
1505
1506
1507
1508
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            image_grid_thw = mm_inputs.get("image_grid_thw", [])
            video_grid_thw = mm_inputs.get("video_grid_thw", [])
        else:
            image_grid_thw = [None] * len(images)
            video_grid_thw = [None] * len(videos)
luopl's avatar
luopl committed
1509
1510
1511
1512

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
luopl's avatar
luopl committed
1513
                image_seqlen = image_grid_thw[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
luopl's avatar
luopl committed
1514
                content = content.replace(
luopl's avatar
luopl committed
1515
                    IMAGE_PLACEHOLDER, f"<|vision_start|>{self.image_token * image_seqlen}<|vision_end|>", 1
luopl's avatar
luopl committed
1516
1517
1518
1519
                )
                num_image_tokens += 1

            while VIDEO_PLACEHOLDER in content:
luopl's avatar
luopl committed
1520
                video_seqlen = video_grid_thw[num_video_tokens].prod() // merge_length if self.expand_mm_tokens else 1
luopl's avatar
luopl committed
1521
                content = content.replace(
luopl's avatar
luopl committed
1522
                    VIDEO_PLACEHOLDER, f"<|vision_start|>{self.video_token * video_seqlen}<|vision_end|>", 1
luopl's avatar
luopl committed
1523
1524
1525
1526
1527
1528
1529
                )
                num_video_tokens += 1

            message["content"] = content

        return messages

chenych's avatar
chenych committed
1530

chenych's avatar
chenych committed
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
@dataclass
class GLM4VPlugin(Qwen2VLPlugin):
    @override
    def _get_mm_inputs(
        self,
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "MMProcessor",
    ) -> dict[str, "torch.Tensor"]:
        image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
        video_processor: BaseImageProcessor = getattr(processor, "video_processor", None)
        mm_inputs = {}
        if len(images) != 0:
            images = self._regularize_images(
                images,
                image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
            )["images"]
            mm_inputs.update(image_processor(images, return_tensors="pt"))

        if len(videos) != 0:
            video_data = self._regularize_videos(
                videos,
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
                video_fps=getattr(processor, "video_fps", 2.0),
                video_maxlen=getattr(processor, "video_maxlen", 128),
            )
            # prepare video metadata
            video_metadata = [
                {"fps": 2, "duration": len(video), "total_frames": len(video)} for video in video_data["videos"]
            ]
            mm_inputs.update(video_processor(images=None, videos=video_data["videos"], video_metadata=video_metadata))

        return mm_inputs

    @override
    def process_messages(
        self,
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
        self._validate_input(processor, images, videos, audios)
        self._validate_messages(messages, images, videos, audios)
        num_image_tokens, num_video_tokens = 0, 0
        messages = deepcopy(messages)
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")

        merge_length: int = getattr(image_processor, "merge_size") ** 2
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            image_grid_thw = mm_inputs.get("image_grid_thw", [])
            video_grid_thw = mm_inputs.get("video_grid_thw", [])
            num_frames = video_grid_thw[0][0] if len(video_grid_thw) > 0 else 0  # hard code for now
            timestamps = mm_inputs.get("timestamps", [])

            if hasattr(timestamps, "tolist"):
                timestamps = timestamps.tolist()

            if not timestamps:
                timestamps_list = []
            elif isinstance(timestamps[0], list):
                timestamps_list = timestamps[0]
            else:
                timestamps_list = timestamps

            unique_timestamps = timestamps_list.copy()
            selected_timestamps = unique_timestamps[:num_frames]
            while len(selected_timestamps) < num_frames:
                selected_timestamps.append(selected_timestamps[-1] if selected_timestamps else 0)

        else:
            image_grid_thw = [None] * len(images)
            video_grid_thw = [None] * len(videos)
            num_frames = 0
            selected_timestamps = [0]

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                image_seqlen = image_grid_thw[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
                content = content.replace(
                    IMAGE_PLACEHOLDER, f"<|begin_of_image|>{self.image_token * image_seqlen}<|end_of_image|>", 1
                )
                num_image_tokens += 1

            while VIDEO_PLACEHOLDER in content:
                video_structure = ""
                for frame_index in range(num_frames):
                    video_seqlen = (
                        video_grid_thw[num_video_tokens][1:].prod() // merge_length if self.expand_mm_tokens else 1
                    )
                    timestamp_sec = selected_timestamps[frame_index]
                    frame_structure = (
                        f"<|begin_of_image|>{self.image_token * video_seqlen}<|end_of_image|>{timestamp_sec}"
                    )
                    video_structure += frame_structure

                content = content.replace(VIDEO_PLACEHOLDER, f"<|begin_of_video|>{video_structure}<|end_of_video|>", 1)
                num_video_tokens += 1

            message["content"] = content

        return messages

    @override
    def get_mm_inputs(
        self,
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["ProcessorMixin"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
        self._validate_input(processor, images, videos, audios)
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
        mm_inputs.pop("timestamps", None)
        return mm_inputs


chenych's avatar
chenych committed
1658
class Qwen2OmniPlugin(Qwen2VLPlugin):
luopl's avatar
luopl committed
1659
    @override
chenych's avatar
chenych committed
1660
    def _get_mm_inputs(
luopl's avatar
luopl committed
1661
        self,
chenych's avatar
chenych committed
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "MMProcessor",
    ) -> dict[str, "torch.Tensor"]:
        image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
        feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
        mm_inputs = {}
        if len(images) != 0:
            images = self._regularize_images(
                images,
                image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
            )["images"]
            mm_inputs.update(image_processor(images, return_tensors="pt"))
chenych's avatar
chenych committed
1677

chenych's avatar
chenych committed
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
        if len(videos) != 0:
            video_dict = self._regularize_videos(
                videos,
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
                video_fps=getattr(processor, "video_fps", 2.0),
                video_maxlen=getattr(processor, "video_maxlen", 128),
            )
            mm_inputs.update(image_processor(images=None, videos=video_dict["videos"], return_tensors="pt"))
            temporal_patch_size: int = getattr(image_processor, "temporal_patch_size", 2)
            mm_inputs["video_second_per_grid"] = torch.tensor(
                [temporal_patch_size / fps for fps in video_dict["fps_per_video"]]
            )

        if len(audios) != 0:
            audios = self._regularize_audios(
                audios,
                sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
            )["audios"]
            mm_inputs.update(
                feature_extractor(
                    audios,
                    sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
                    return_attention_mask=True,
                    padding="max_length",
                    return_tensors="pt",
                )
            )
            mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask")  # prevent conflicts
luopl's avatar
luopl committed
1707

chenych's avatar
chenych committed
1708
        return mm_inputs
luopl's avatar
luopl committed
1709
1710
1711
1712

    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1713
1714
1715
1716
1717
1718
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1719
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
1720
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
1721
        num_image_tokens, num_video_tokens, num_audio_tokens = 0, 0, 0
luopl's avatar
luopl committed
1722
        messages = deepcopy(messages)
chenych's avatar
chenych committed
1723
1724
1725
1726
        image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)

        merge_length = processor.image_processor.merge_size**2
        use_audio_in_video = getattr(processor, "use_audio_in_video", False)
chenych's avatar
chenych committed
1727
1728
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
chenych's avatar
chenych committed
1729
1730
1731
1732
1733
            image_grid_thw = mm_inputs.get("image_grid_thw", [])
            video_grid_thw = mm_inputs.get("video_grid_thw", [])
            if "feature_attention_mask" in mm_inputs:
                input_lengths = (mm_inputs["feature_attention_mask"].sum(-1).numpy() - 1) // 2 + 1
                audio_lengths = (input_lengths - 2) // 2 + 1
chenych's avatar
chenych committed
1734
1735
        else:
            mm_inputs = {}
chenych's avatar
chenych committed
1736
1737
1738
            image_grid_thw = [None] * len(images)
            video_grid_thw = [None] * len(videos)
            audio_lengths = [None] * len(audios)
chenych's avatar
chenych committed
1739
1740
1741
1742

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
chenych's avatar
chenych committed
1743
                image_seqlen = image_grid_thw[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
chenych's avatar
chenych committed
1744
                content = content.replace(
chenych's avatar
chenych committed
1745
                    IMAGE_PLACEHOLDER, f"<|vision_bos|>{self.image_token * image_seqlen}<|vision_eos|>", 1
chenych's avatar
chenych committed
1746
1747
                )
                num_image_tokens += 1
luopl's avatar
luopl committed
1748

chenych's avatar
chenych committed
1749
1750
1751
1752
1753
1754
            if (
                use_audio_in_video and len(audios) and len(videos)
            ):  # if use the audio of video # deal video token and audio token togather
                if len(videos) != len(audios):
                    raise ValueError(
                        f"Number of videos ({len(videos)}) must match number of audios ({len(audios)}) when using audio in video."
chenych's avatar
chenych committed
1755
                    )
luopl's avatar
luopl committed
1756
1757

                while VIDEO_PLACEHOLDER in content:
chenych's avatar
chenych committed
1758
1759
1760
1761
1762
1763
                    video_pos = content.find(VIDEO_PLACEHOLDER)
                    audio_pos = content.find(AUDIO_PLACEHOLDER, video_pos)
                    if audio_pos == -1 or audio_pos < video_pos:
                        raise ValueError(
                            f"Each {VIDEO_PLACEHOLDER} must be followed by an {AUDIO_PLACEHOLDER} when using audio in video."
                        )
chenych's avatar
chenych committed
1764

chenych's avatar
chenych committed
1765
1766
1767
1768
1769
1770
                    audio_t_index = torch.arange(audio_lengths[num_audio_tokens])
                    video_t_index = (
                        torch.arange(video_grid_thw[num_video_tokens][0])
                        .view(-1, 1, 1)
                        .expand(
                            -1,
chenych's avatar
chenych committed
1771
1772
                            video_grid_thw[num_video_tokens][1] // image_processor.merge_size,
                            video_grid_thw[num_video_tokens][2] // image_processor.merge_size,
chenych's avatar
chenych committed
1773
1774
1775
1776
1777
1778
1779
                        )
                        .flatten()
                        * mm_inputs["video_second_per_grid"][num_video_tokens]
                        * 25  # FIXME hardcode of position_id_per_seconds=25
                    ).long()
                    t_ntoken_per_chunk = 50  # FIXME hardcode: [25 * 2]
                    video_chunk_indices = processor.get_chunked_index(video_t_index, t_ntoken_per_chunk)
chenych's avatar
chenych committed
1780
                    audio_chunk_indices = processor.get_chunked_index(audio_t_index, t_ntoken_per_chunk)
chenych's avatar
chenych committed
1781
                    placeholder_string = ""
chenych's avatar
chenych committed
1782
                    placeholder_string += "<|vision_bos|>" + "<|audio_bos|>"
chenych's avatar
chenych committed
1783
1784
1785
1786
1787
                    for j in range(max(len(video_chunk_indices), len(audio_chunk_indices))):
                        video_chunk_index = video_chunk_indices[j] if j < len(video_chunk_indices) else None
                        audio_chunk_index = audio_chunk_indices[j] if j < len(audio_chunk_indices) else None
                        if video_chunk_index is not None:
                            placeholder_string += self.video_token * (video_chunk_index[1] - video_chunk_index[0])
chenych's avatar
chenych committed
1788

chenych's avatar
chenych committed
1789
1790
1791
                        if audio_chunk_index is not None:
                            placeholder_string += self.audio_token * (audio_chunk_index[1] - audio_chunk_index[0])

chenych's avatar
chenych committed
1792
                    placeholder_string += "<|audio_eos|>" + "<|vision_eos|>"
chenych's avatar
chenych committed
1793
1794
1795
1796
                    content = content.replace(VIDEO_PLACEHOLDER, placeholder_string, 1)
                    content = content.replace(AUDIO_PLACEHOLDER, "", 1)
                    num_audio_tokens += 1
                    num_video_tokens += 1
chenych's avatar
chenych committed
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
            else:
                while AUDIO_PLACEHOLDER in content:
                    audio_seqlen = audio_lengths[num_audio_tokens] if self.expand_mm_tokens else 1
                    content = content.replace(
                        AUDIO_PLACEHOLDER, f"<|audio_bos|>{self.audio_token * audio_seqlen}<|audio_eos|>", 1
                    )
                    num_audio_tokens += 1

                while VIDEO_PLACEHOLDER in content:
                    video_seqlen = (
                        video_grid_thw[num_video_tokens].prod() // merge_length if self.expand_mm_tokens else 1
                    )
                    content = content.replace(
                        VIDEO_PLACEHOLDER, f"<|vision_bos|>{self.video_token * video_seqlen}<|vision_eos|>", 1
                    )
                    num_video_tokens += 1
chenych's avatar
chenych committed
1813
1814
1815

            message["content"] = content

luopl's avatar
luopl committed
1816
1817
        return messages

chenych's avatar
chenych committed
1818
1819
1820

@dataclass
class VideoLlavaPlugin(BasePlugin):
luopl's avatar
luopl committed
1821
    @override
chenych's avatar
chenych committed
1822
    def process_messages(
luopl's avatar
luopl committed
1823
        self,
chenych's avatar
chenych committed
1824
1825
1826
1827
1828
1829
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1830
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
1831
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
        num_image_tokens, num_video_tokens = 0, 0
        messages = deepcopy(messages)
        num_frames = 0
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values_images" in mm_inputs:
                height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values_images"][0]))
                num_frames = 1

            if "pixel_values_videos" in mm_inputs:
                one_video = to_numpy_array(mm_inputs["pixel_values_videos"][0])
                height, width = get_image_size(one_video[0])
                num_frames = one_video.shape[0]  # frame dim is always after batch dim

            if "pixel_values_images" in mm_inputs or "pixel_values_videos" in mm_inputs:
                image_seqlen = (height // processor.patch_size) * (
                    width // processor.patch_size
                ) + processor.num_additional_image_tokens
                video_seqlen = image_seqlen * num_frames
                if processor.vision_feature_select_strategy == "default":
                    image_seqlen -= 1
        else:
            image_seqlen, video_seqlen = 1, 1

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)
                num_image_tokens += 1

            while VIDEO_PLACEHOLDER in content:
                content = content.replace(VIDEO_PLACEHOLDER, "{{video}}" * video_seqlen, 1)
                num_video_tokens += 1

            content = content.replace("{{image}}", self.image_token)
            message["content"] = content.replace("{{video}}", self.video_token)

        return messages
luopl's avatar
luopl committed
1870
1871
1872
1873


PLUGINS = {
    "base": BasePlugin,
chenych's avatar
chenych committed
1874
    "gemma3": Gemma3Plugin,
chenych's avatar
chenych committed
1875
1876
    "glm4v": GLM4VPlugin,
    "gemma3n": Gemma3nPlugin,
chenych's avatar
chenych committed
1877
    "intern_vl": InternVLPlugin,
chenych's avatar
chenych committed
1878
    "kimi_vl": KimiVLPlugin,
chenych's avatar
chenych committed
1879
    "llama4": Llama4Plugin,
luopl's avatar
luopl committed
1880
1881
1882
    "llava": LlavaPlugin,
    "llava_next": LlavaNextPlugin,
    "llava_next_video": LlavaNextVideoPlugin,
luopl's avatar
luopl committed
1883
1884
    "minicpm_v": MiniCPMVPlugin,
    "mllama": MllamaPlugin,
luopl's avatar
luopl committed
1885
    "paligemma": PaliGemmaPlugin,
luopl's avatar
luopl committed
1886
    "pixtral": PixtralPlugin,
chenych's avatar
chenych committed
1887
    "qwen2_audio": Qwen2AudioPlugin,
chenych's avatar
chenych committed
1888
    "qwen2_omni": Qwen2OmniPlugin,
chenych's avatar
chenych committed
1889
    "qwen2_vl": Qwen2VLPlugin,
luopl's avatar
luopl committed
1890
1891
1892
1893
    "video_llava": VideoLlavaPlugin,
}


chenych's avatar
chenych committed
1894
1895
def register_mm_plugin(name: str, plugin_class: type["BasePlugin"]) -> None:
    r"""Register a multimodal plugin."""
chenych's avatar
chenych committed
1896
1897
1898
1899
1900
1901
    if name in PLUGINS:
        raise ValueError(f"Multimodal plugin {name} already exists.")

    PLUGINS[name] = plugin_class


luopl's avatar
luopl committed
1902
1903
1904
1905
def get_mm_plugin(
    name: str,
    image_token: Optional[str] = None,
    video_token: Optional[str] = None,
chenych's avatar
chenych committed
1906
    audio_token: Optional[str] = None,
luopl's avatar
luopl committed
1907
) -> "BasePlugin":
chenych's avatar
chenych committed
1908
    r"""Get plugin for multimodal inputs."""
chenych's avatar
chenych committed
1909
    if name not in PLUGINS:
luopl's avatar
luopl committed
1910
        raise ValueError(f"Multimodal plugin `{name}` not found.")
luopl's avatar
luopl committed
1911

chenych's avatar
chenych committed
1912
    return PLUGINS[name](image_token, video_token, audio_token)