mm_plugin.py 64.8 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's Transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llava/processing_llava.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

chenych's avatar
chenych committed
18
import inspect
luopl's avatar
luopl committed
19
import math
luopl's avatar
luopl committed
20
import re
luopl's avatar
luopl committed
21
from copy import deepcopy
chenych's avatar
chenych committed
22
from dataclasses import dataclass
luopl's avatar
luopl committed
23
from io import BytesIO
chenych's avatar
chenych committed
24
from typing import TYPE_CHECKING, BinaryIO, Literal, Optional, TypedDict, Union
luopl's avatar
luopl committed
25
26

import numpy as np
luopl's avatar
luopl committed
27
import torch
luopl's avatar
luopl committed
28
29
30
from transformers.image_utils import get_image_size, to_numpy_array
from typing_extensions import override

chenych's avatar
chenych committed
31
32
33
34
35
36
37
38
39
40
41
from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
from ..extras.packages import (
    is_librosa_available,
    is_pillow_available,
    is_pyav_available,
    is_transformers_version_greater_than,
)


if is_librosa_available():
    import librosa
luopl's avatar
luopl committed
42
43
44
45
46
47
48
49
50
51
52


if is_pillow_available():
    from PIL import Image
    from PIL.Image import Image as ImageObject


if is_pyav_available():
    import av


luopl's avatar
luopl committed
53
54
55
56
57
58
59
if is_transformers_version_greater_than("4.45.0"):
    from transformers.models.mllama.processing_mllama import (
        convert_sparse_cross_attention_mask_to_dense,
        get_cross_attention_token_mask,
    )


luopl's avatar
luopl committed
60
61
if TYPE_CHECKING:
    from av.stream import Stream
chenych's avatar
chenych committed
62
    from numpy.typing import NDArray
luopl's avatar
luopl committed
63
    from transformers import PreTrainedTokenizer, ProcessorMixin
chenych's avatar
chenych committed
64
    from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
luopl's avatar
luopl committed
65
66
67
68
69
70
    from transformers.image_processing_utils import BaseImageProcessor

    class EncodedImage(TypedDict):
        path: Optional[str]
        bytes: Optional[bytes]

chenych's avatar
chenych committed
71
72
73
74
75
76
77
78
79
80
81
82
    ImageInput = Union[str, bytes, EncodedImage, BinaryIO, ImageObject]
    VideoInput = Union[str, BinaryIO]
    AudioInput = Union[str, BinaryIO, NDArray]

    class MMProcessor(ProcessorMixin):
        patch_size: int
        image_seq_length: int
        num_additional_image_tokens: int
        vision_feature_select_strategy: Literal["default", "full"]

        def _get_number_of_features(self, orig_height: int, orig_width: int, height: int, width: int) -> int:
            pass
luopl's avatar
luopl committed
83
84


chenych's avatar
chenych committed
85
86
87
88
def _get_paligemma_token_type_ids(imglens: list[int], seqlens: list[int], processor: "MMProcessor") -> list[list[int]]:
    r"""Get paligemma token type ids for computing loss.

    It is slightly different with the original token type ids where the prompt part is 0.
luopl's avatar
luopl committed
89
90

    Returns:
chenych's avatar
chenych committed
91
92
        batch_token_type_ids: shape (batch_size, seq_length)

luopl's avatar
luopl committed
93
94
95
    """
    batch_token_type_ids = []
    for imglen, seqlen in zip(imglens, seqlens):
chenych's avatar
chenych committed
96
        image_seqlen = imglen * processor.image_seq_length
luopl's avatar
luopl committed
97
98
99
100
101
        batch_token_type_ids.append([0] * image_seqlen + [1] * (seqlen - image_seqlen))

    return batch_token_type_ids


chenych's avatar
chenych committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def _get_gemma3_token_type_ids(batch_ids: list[list[int]], processor: "MMProcessor"):
    r"""Get gemma3 token type ids for computing loss.

    Returns:
        batch_token_type_ids: shape (batch_size, seq_length)

    """
    image_token_id: int = getattr(processor, "image_token_id")
    batch_token_type_ids = []
    for token_ids in batch_ids:
        token_ids = np.array(token_ids)
        token_type_ids = np.zeros_like(token_ids)
        token_type_ids[token_ids == image_token_id] = 1
        batch_token_type_ids.append(token_type_ids.tolist())

    return batch_token_type_ids


def _make_batched_images(images: list["ImageObject"], imglens: list[int]) -> list[list["ImageObject"]]:
    r"""Make nested list of images."""
    batch_images = []
    for imglen in imglens:
        batch_images.append(images[:imglen])
        images = images[imglen:]

    return batch_images


chenych's avatar
chenych committed
130
131
132
133
134
135
@dataclass
class MMPluginMixin:
    image_token: Optional[str]
    video_token: Optional[str]
    audio_token: Optional[str]
    expand_mm_tokens: bool = True
luopl's avatar
luopl committed
136
137
138

    def _validate_input(
        self,
chenych's avatar
chenych committed
139
140
141
142
        processor: Optional["MMProcessor"],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
luopl's avatar
luopl committed
143
    ) -> None:
chenych's avatar
chenych committed
144
145
146
147
148
149
        r"""Validate if this model accepts the input modalities."""
        image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
        video_processor: BaseImageProcessor = getattr(
            processor, "video_processor", getattr(processor, "image_processor", None)
        )
        feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
luopl's avatar
luopl committed
150
        if len(images) != 0 and self.image_token is None:
luopl's avatar
luopl committed
151
152
153
            raise ValueError(
                "This model does not support image input. Please check whether the correct `template` is used."
            )
luopl's avatar
luopl committed
154
155

        if len(videos) != 0 and self.video_token is None:
luopl's avatar
luopl committed
156
157
158
            raise ValueError(
                "This model does not support video input. Please check whether the correct `template` is used."
            )
luopl's avatar
luopl committed
159

chenych's avatar
chenych committed
160
161
162
163
164
165
166
167
168
169
170
        if len(audios) != 0 and self.audio_token is None:
            raise ValueError(
                "This model does not support audio input. Please check whether the correct `template` is used."
            )

        if self.image_token is not None and processor is None:
            raise ValueError("Processor was not found, please check and update your processor config.")

        if self.image_token is not None and image_processor is None:
            raise ValueError("Image processor was not found, please check and update your processor config.")

chenych's avatar
chenych committed
171
172
173
        if self.video_token is not None and video_processor is None:
            raise ValueError("Video processor was not found, please check and update your processor config.")

chenych's avatar
chenych committed
174
175
176
177
178
179
        if self.audio_token is not None and feature_extractor is None:
            raise ValueError("Audio feature extractor was not found, please check and update your processor config.")

    def _preprocess_image(
        self, image: "ImageObject", image_max_pixels: int, image_min_pixels: int, **kwargs
    ) -> "ImageObject":
chenych's avatar
chenych committed
180
        r"""Pre-process a single image."""
chenych's avatar
chenych committed
181
182
        if (image.width * image.height) > image_max_pixels:
            resize_factor = math.sqrt(image_max_pixels / (image.width * image.height))
luopl's avatar
luopl committed
183
            width, height = int(image.width * resize_factor), int(image.height * resize_factor)
chenych's avatar
chenych committed
184
185
186
187
188
189
            image = image.resize((width, height))

        if (image.width * image.height) < image_min_pixels:
            resize_factor = math.sqrt(image_min_pixels / (image.width * image.height))
            width, height = int(image.width * resize_factor), int(image.height * resize_factor)
            image = image.resize((width, height))
luopl's avatar
luopl committed
190
191
192
193
194
195

        if image.mode != "RGB":
            image = image.convert("RGB")

        return image

chenych's avatar
chenych committed
196
197
    def _get_video_sample_indices(
        self, video_stream: "Stream", video_fps: float, video_maxlen: int, **kwargs
chenych's avatar
chenych committed
198
199
    ) -> list[int]:
        r"""Compute video sample indices according to fps."""
luopl's avatar
luopl committed
200
        total_frames = video_stream.frames
chenych's avatar
chenych committed
201
202
203
204
        if total_frames == 0:  # infinite video
            return np.linspace(0, video_maxlen - 1, video_maxlen).astype(np.int32)

        sample_frames = math.floor(float(video_stream.duration * video_stream.time_base) * video_fps)
luopl's avatar
luopl committed
205
        sample_frames = min(total_frames, video_maxlen, sample_frames)
chenych's avatar
chenych committed
206
        return np.linspace(0, total_frames - 1, sample_frames).astype(np.int32)
luopl's avatar
luopl committed
207

chenych's avatar
chenych committed
208
209
    def _regularize_images(self, images: list["ImageInput"], **kwargs) -> dict[str, list["ImageObject"]]:
        r"""Regularize images to avoid error. Including reading and pre-processing."""
luopl's avatar
luopl committed
210
211
        results = []
        for image in images:
chenych's avatar
chenych committed
212
            if isinstance(image, (str, BinaryIO)):
luopl's avatar
luopl committed
213
                image = Image.open(image)
luopl's avatar
luopl committed
214
215
            elif isinstance(image, bytes):
                image = Image.open(BytesIO(image))
luopl's avatar
luopl committed
216
217
218
219
220
221
222
            elif isinstance(image, dict):
                if image["bytes"] is not None:
                    image = Image.open(BytesIO(image["bytes"]))
                else:
                    image = Image.open(image["path"])

            if not isinstance(image, ImageObject):
chenych's avatar
chenych committed
223
                raise ValueError(f"Expect input is a list of images, but got {type(image)}.")
luopl's avatar
luopl committed
224
225
226

            results.append(self._preprocess_image(image, **kwargs))

chenych's avatar
chenych committed
227
        return {"images": results}
luopl's avatar
luopl committed
228

chenych's avatar
chenych committed
229
230
    def _regularize_videos(self, videos: list["VideoInput"], **kwargs) -> dict[str, list[list["ImageObject"]]]:
        r"""Regularizes videos to avoid error. Including reading, resizing and converting."""
luopl's avatar
luopl committed
231
232
233
234
        results = []
        for video in videos:
            container = av.open(video, "r")
            video_stream = next(stream for stream in container.streams if stream.type == "video")
chenych's avatar
chenych committed
235
            sample_indices = self._get_video_sample_indices(video_stream, **kwargs)
chenych's avatar
chenych committed
236
            frames: list[ImageObject] = []
luopl's avatar
luopl committed
237
238
239
240
241
            container.seek(0)
            for frame_idx, frame in enumerate(container.decode(video_stream)):
                if frame_idx in sample_indices:
                    frames.append(frame.to_image())

chenych's avatar
chenych committed
242
            frames = self._regularize_images(frames, **kwargs)["images"]
luopl's avatar
luopl committed
243
244
            results.append(frames)

chenych's avatar
chenych committed
245
        return {"videos": results}
luopl's avatar
luopl committed
246

chenych's avatar
chenych committed
247
248
249
250
251
    def _regularize_audios(
        self, audios: list["AudioInput"], sampling_rate: float, **kwargs
    ) -> dict[str, Union[list["NDArray"], list[float]]]:
        r"""Regularizes audios to avoid error. Including reading and resampling."""
        results, sampling_rates = [], []
chenych's avatar
chenych committed
252
        for audio in audios:
chenych's avatar
chenych committed
253
254
            if isinstance(audio, (str, BinaryIO)):
                audio, sampling_rate = librosa.load(audio, sr=sampling_rate)
chenych's avatar
chenych committed
255
256
257
258
259

            if not isinstance(audio, np.ndarray):
                raise ValueError(f"Expect input is a list of audios, but got {type(audio)}.")

            results.append(audio)
chenych's avatar
chenych committed
260
            sampling_rates.append(sampling_rate)
chenych's avatar
chenych committed
261

chenych's avatar
chenych committed
262
        return {"audios": results, "sampling_rates": sampling_rates}
chenych's avatar
chenych committed
263

luopl's avatar
luopl committed
264
265
    def _get_mm_inputs(
        self,
chenych's avatar
chenych committed
266
267
268
269
270
271
272
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "MMProcessor",
        imglens: Optional[list[int]] = None,
    ) -> dict[str, "torch.Tensor"]:
        r"""Process visual inputs.
luopl's avatar
luopl committed
273
274
275
276
277
278
279

        Returns: (llava and paligemma)
            pixel_values: tensor with shape (B, C, H, W)

        Returns: (qwen2-vl)
            pixel_values: tensor with shape (num_patches, patch_dim)
            image_grid_thw: tensor with shape (num_images, 3), where the three numbers are time, width, height
chenych's avatar
chenych committed
280
281
282
283
284
285
286
287
288
                            where num_patches == torch.prod(image_grid_thw)

        Returns: (mllama)
            pixel_values: tensor with shape
                          (batch_size, max_num_images, max_image_tiles, channels, tile_height, tile_width)
                          For example, (2, 1, 4, 3, 560, 560).
            aspect_ratio_ids: tensor with shape (batch_size, max_num_images). For example, (2, 1).
            aspect_ratio_mask: tensor with shape (batch_size, max_num_images, max_image_tiles). For example, (2, 1, 4).
            num_tiles: List[List[int]] with shape (batch_size, num_images_in_batch). For example, (2, 1).
luopl's avatar
luopl committed
289
290

        """
chenych's avatar
chenych committed
291
        mm_inputs = {}
luopl's avatar
luopl committed
292
        if len(images) != 0:
chenych's avatar
chenych committed
293
            image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
luopl's avatar
luopl committed
294
295
            images = self._regularize_images(
                images,
chenych's avatar
chenych committed
296
297
                image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
chenych's avatar
chenych committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
            )["images"]
            if imglens is not None:  # if imglens are provided, make batched images
                images = _make_batched_images(images, imglens)

            image_processor_kwargs = {}
            if getattr(processor, "image_do_pan_and_scan", False):  # gemma3 image processor
                image_processor_kwargs.update(
                    {
                        "do_pan_and_scan": True,
                        "pan_and_scan_min_crop_size": 256,
                        "pan_and_scan_max_num_crops": 4,
                        "pan_and_scan_min_ratio_to_activate": 1.2,
                    }
                )

            mm_inputs.update(image_processor(images, return_tensors="pt", **image_processor_kwargs))
luopl's avatar
luopl committed
314
315

        if len(videos) != 0:
chenych's avatar
chenych committed
316
317
318
            video_processor: BaseImageProcessor = getattr(
                processor, "video_processor", getattr(processor, "image_processor", None)
            )
luopl's avatar
luopl committed
319
320
            videos = self._regularize_videos(
                videos,
chenych's avatar
chenych committed
321
322
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
luopl's avatar
luopl committed
323
                video_fps=getattr(processor, "video_fps", 2.0),
chenych's avatar
chenych committed
324
                video_maxlen=getattr(processor, "video_maxlen", 128),
chenych's avatar
chenych committed
325
            )["videos"]
chenych's avatar
chenych committed
326
327
328
329
330
331
            if "videos" in inspect.signature(video_processor.preprocess).parameters:  # for qwen2_vl and video_llava
                mm_inputs.update(video_processor(images=None, videos=videos, return_tensors="pt"))
            else:  # for llava_next_video
                mm_inputs.update(video_processor(videos, return_tensors="pt"))

        if len(audios) != 0:
chenych's avatar
chenych committed
332
            feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
chenych's avatar
chenych committed
333
334
            audios = self._regularize_audios(
                audios,
chenych's avatar
chenych committed
335
336
                sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
            )["audios"]
chenych's avatar
chenych committed
337
338
339
            mm_inputs.update(
                feature_extractor(
                    audios,
chenych's avatar
chenych committed
340
                    sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
chenych's avatar
chenych committed
341
342
343
344
345
346
                    return_attention_mask=True,
                    padding="max_length",
                    return_tensors="pt",
                )
            )
            mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask")  # prevent conflicts
luopl's avatar
luopl committed
347
348
349

        return mm_inputs

chenych's avatar
chenych committed
350
351
352

@dataclass
class BasePlugin(MMPluginMixin):
luopl's avatar
luopl committed
353
354
    def process_messages(
        self,
chenych's avatar
chenych committed
355
356
357
358
359
360
361
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
        r"""Pre-process input messages before tokenization for VLMs."""
chenych's avatar
chenych committed
362
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
363
364
365
366
        return messages

    def process_token_ids(
        self,
chenych's avatar
chenych committed
367
368
369
370
371
        input_ids: list[int],
        labels: Optional[list[int]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
luopl's avatar
luopl committed
372
        tokenizer: "PreTrainedTokenizer",
chenych's avatar
chenych committed
373
374
375
        processor: Optional["MMProcessor"],
    ) -> tuple[list[int], Optional[list[int]]]:
        r"""Pre-process token ids after tokenization for VLMs."""
chenych's avatar
chenych committed
376
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
377
378
379
380
        return input_ids, labels

    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
381
382
383
384
385
386
387
388
389
390
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
        r"""Build batched multimodal inputs for VLMs.
luopl's avatar
luopl committed
391
392
393
394

        Arguments:
            images: a list of image inputs, shape (num_images,)
            videos: a list of video inputs, shape (num_videos,)
chenych's avatar
chenych committed
395
            audios: a list of audio inputs, shape (num_audios,)
luopl's avatar
luopl committed
396
397
            imglens: number of images in each sample, shape (batch_size,)
            vidlens: number of videos in each sample, shape (batch_size,)
chenych's avatar
chenych committed
398
            audlens: number of audios in each sample, shape (batch_size,)
luopl's avatar
luopl committed
399
            batch_ids: token ids of input samples, shape (batch_size, seq_len)
luopl's avatar
luopl committed
400
            processor: a processor for pre-processing images and videos
chenych's avatar
chenych committed
401

luopl's avatar
luopl committed
402
        """
chenych's avatar
chenych committed
403
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
404
        return self._get_mm_inputs(images, videos, audios, processor)
luopl's avatar
luopl committed
405
406


chenych's avatar
chenych committed
407
@dataclass
chenych's avatar
chenych committed
408
class Gemma3Plugin(BasePlugin):
luopl's avatar
luopl committed
409
410
411
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
412
413
414
415
416
417
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
418
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
419
420
        num_image_tokens = 0
        messages = deepcopy(messages)
chenych's avatar
chenych committed
421
422
423
424
425
426
427
428
        boi_token: str = getattr(processor, "boi_token")
        full_image_sequence: str = getattr(processor, "full_image_sequence")
        image_str = full_image_sequence if self.expand_mm_tokens else boi_token

        do_pan_and_scan: bool = getattr(processor, "image_do_pan_and_scan", False)
        if do_pan_and_scan:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)

luopl's avatar
luopl committed
429
430
431
        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
chenych's avatar
chenych committed
432
433
434
435
436
437
438
439
440
                if do_pan_and_scan:
                    image_placeholder_str = (
                        "Here is the original image {{image}} and here are some crops to help you see better "
                        + " ".join(["{{image}}"] * mm_inputs["num_crops"][0][num_image_tokens])
                    )
                else:
                    image_placeholder_str = "{{image}}"

                content = content.replace(IMAGE_PLACEHOLDER, image_placeholder_str, 1)
luopl's avatar
luopl committed
441
                num_image_tokens += 1
luopl's avatar
luopl committed
442

chenych's avatar
chenych committed
443
            message["content"] = content.replace("{{image}}", image_str)
luopl's avatar
luopl committed
444
445

        if len(images) != num_image_tokens:
luopl's avatar
luopl committed
446
            raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")
luopl's avatar
luopl committed
447
448
449
450
451
452

        return messages

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
453
454
455
456
457
458
459
460
461
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
462
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
463
464
465
466
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
        mm_inputs.pop("num_crops", None)
        mm_inputs["token_type_ids"] = _get_gemma3_token_type_ids(batch_ids, processor)
        return mm_inputs
luopl's avatar
luopl committed
467
468


chenych's avatar
chenych committed
469
@dataclass
chenych's avatar
chenych committed
470
class Llama4Plugin(BasePlugin):
luopl's avatar
luopl committed
471
472
473
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
474
475
476
477
478
479
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
480
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
481
482
483
484
485
486
487
488
489
490
491
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                image_height, image_width = mm_inputs["pixel_values"][0].shape[-2:]
                num_patches_per_chunk = int(
                    (image_height // processor.patch_size)
                    * (image_width // processor.patch_size)
                    // processor.downsample_ratio
                )
                aspect_ratios = mm_inputs.pop("aspect_ratios")

luopl's avatar
luopl committed
492
493
        num_image_tokens = 0
        messages = deepcopy(messages)
chenych's avatar
chenych committed
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
        for message in messages:
            content = message["content"]
            placeholder_count = content.count(IMAGE_PLACEHOLDER)
            if self.expand_mm_tokens:
                prompt_splits = content.split(IMAGE_PLACEHOLDER)
                new_content = []
                for local_image_index, split_part in enumerate(prompt_splits):
                    new_content.append(split_part)
                    if local_image_index < placeholder_count:
                        tokens_for_this_image = processor._prompt_split_image(
                            aspect_ratios[num_image_tokens], num_patches_per_chunk
                        )
                        num_image_tokens += 1
                        new_content.append(tokens_for_this_image)

                content = "".join(new_content)

            message["content"] = content

        if len(images) != num_image_tokens:
            raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")

        return messages

    @override
    def get_mm_inputs(
        self,
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
531
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
chenych's avatar
chenych committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
        mm_inputs.pop("aspect_ratios", None)
        return mm_inputs


@dataclass
class LlavaPlugin(BasePlugin):
    @override
    def process_messages(
        self,
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
        self._validate_input(processor, images, videos, audios)
        num_image_tokens = 0
        messages = deepcopy(messages)
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0]))
                image_seqlen = (height // processor.patch_size) * (
                    width // processor.patch_size
                ) + processor.num_additional_image_tokens
                if processor.vision_feature_select_strategy == "default":
                    image_seqlen -= 1
        else:
            image_seqlen = 1

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)
                num_image_tokens += 1

            message["content"] = content.replace("{{image}}", self.image_token)

        if len(images) != num_image_tokens:
            raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")

        return messages


@dataclass
class LlavaNextPlugin(BasePlugin):
    @override
    def process_messages(
        self,
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
        self._validate_input(processor, images, videos, audios)
        num_image_tokens = 0
        messages = deepcopy(messages)
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                image_sizes = iter(mm_inputs["image_sizes"].tolist())
                height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0]))
luopl's avatar
luopl committed
595

luopl's avatar
luopl committed
596
597
        for message in messages:
            content = message["content"]
luopl's avatar
luopl committed
598
            while IMAGE_PLACEHOLDER in content:
luopl's avatar
luopl committed
599
600
601
                if self.expand_mm_tokens:
                    orig_height, orig_width = next(image_sizes)
                    image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width)
chenych's avatar
chenych committed
602
                    if processor.vision_feature_select_strategy == "default":
luopl's avatar
luopl committed
603
604
605
                        image_seqlen -= 1
                else:
                    image_seqlen = 1
luopl's avatar
luopl committed
606
607

                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)
luopl's avatar
luopl committed
608
                num_image_tokens += 1
luopl's avatar
luopl committed
609
610
611
612

            message["content"] = content.replace("{{image}}", self.image_token)

        if len(images) != num_image_tokens:
luopl's avatar
luopl committed
613
614
            raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")

luopl's avatar
luopl committed
615
616
617
        return messages


chenych's avatar
chenych committed
618
@dataclass
luopl's avatar
luopl committed
619
620
621
622
class LlavaNextVideoPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
623
624
625
626
627
628
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
629
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
630
        num_image_tokens, num_video_tokens = 0, 0
luopl's avatar
luopl committed
631
        messages = deepcopy(messages)
chenych's avatar
chenych committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                image_sizes = iter(mm_inputs["image_sizes"].tolist())
                height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0]))

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                if self.expand_mm_tokens:
                    orig_height, orig_width = next(image_sizes)
                    image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width)
                    if processor.vision_feature_select_strategy == "default":
                        image_seqlen -= 1
                else:
                    image_seqlen = 1

                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)
                num_image_tokens += 1

            message["content"] = content.replace("{{image}}", self.image_token)

        if self.expand_mm_tokens:
            if "pixel_values_videos" in mm_inputs:
                one_video = to_numpy_array(mm_inputs.get("pixel_values_videos")[0])
                height, width = get_image_size(one_video[0])
                num_frames = one_video.shape[0]  # frame dim is always after batch dim
chenych's avatar
chenych committed
659
660
                image_seqlen = (height // processor.patch_size) * (width // processor.patch_size)
                video_seqlen = image_seqlen // 4 * num_frames  # divide by 4 needed for avg pooling layer
chenych's avatar
chenych committed
661
662
        else:
            video_seqlen = 1
chenych's avatar
chenych committed
663

chenych's avatar
chenych committed
664
665
666
667
668
        for message in messages:
            content = message["content"]
            while VIDEO_PLACEHOLDER in content:
                content = content.replace(VIDEO_PLACEHOLDER, "{{video}}" * video_seqlen, 1)
                num_video_tokens += 1
luopl's avatar
luopl committed
669

chenych's avatar
chenych committed
670
            message["content"] = content.replace("{{video}}", self.video_token)
luopl's avatar
luopl committed
671
672

        if len(images) != num_image_tokens:
luopl's avatar
luopl committed
673
            raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")
luopl's avatar
luopl committed
674
675

        if len(videos) != num_video_tokens:
luopl's avatar
luopl committed
676
            raise ValueError(f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens.")
luopl's avatar
luopl committed
677
678
679
680

        return messages


chenych's avatar
chenych committed
681
@dataclass
luopl's avatar
luopl committed
682
class MiniCPMVPlugin(BasePlugin):
luopl's avatar
luopl committed
683
684
685
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
686
687
688
689
690
691
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
692
693
        self._validate_input(processor, images, videos, audios)
        num_image_tokens, num_video_tokens, num_audio_tokens = 0, 0, 0
luopl's avatar
luopl committed
694
        messages = deepcopy(messages)
chenych's avatar
chenych committed
695
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
luopl's avatar
luopl committed
696
        mm_inputs = {}
chenych's avatar
chenych committed
697
        audio_inputs = {}
luopl's avatar
luopl committed
698
699
700
701
702
703
        if len(images) != 0 and len(videos) != 0:
            raise ValueError("MiniCPM-V model does not support input images and videos at the same time.")

        if len(videos) != 0:
            max_slice_nums = 2
            use_image_id = False
chenych's avatar
chenych committed
704
            mm_inputs = self._get_mm_inputs([], videos, [], processor)
luopl's avatar
luopl committed
705
706
707
708
        else:
            max_slice_nums = image_processor.max_slice_nums
            use_image_id = image_processor.use_image_id

chenych's avatar
chenych committed
709
        for i, message in enumerate(messages):
luopl's avatar
luopl committed
710
711
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
luopl's avatar
luopl committed
712
                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
luopl's avatar
luopl committed
713
                num_image_tokens += 1
luopl's avatar
luopl committed
714
715
716
717
718
719

            while VIDEO_PLACEHOLDER in content:
                video_seqlen = len(mm_inputs["pixel_values"][num_video_tokens]) if self.expand_mm_tokens else 1
                content = content.replace(VIDEO_PLACEHOLDER, "{{image}}" * video_seqlen, 1)
                num_video_tokens += 1

chenych's avatar
chenych committed
720
721
722
723
724
725
726
            while AUDIO_PLACEHOLDER in content:
                content = content.replace(AUDIO_PLACEHOLDER, "{{audio}}", 1)
                num_audio_tokens += 1

            message["content"] = content.replace("{{image}}", "(<image>./</image>)").replace(
                "{{audio}}", "(<audio>./</audio>)"
            )
luopl's avatar
luopl committed
727
728

        if num_image_tokens > 0:
chenych's avatar
chenych committed
729
730
731
732
            mm_inputs = self._get_mm_inputs(images, [], [], processor)

        if num_audio_tokens > 0:
            audio_inputs = self._get_mm_inputs([], [], audios, processor, ret_phs=True)
luopl's avatar
luopl committed
733
734
735
736

        if mm_inputs:
            pattern = "(<image>./</image>)"
            image_sizes = mm_inputs["image_sizes"]
chenych's avatar
chenych committed
737
            idx = 0
luopl's avatar
luopl committed
738
739
740
741
742
743
744
745
746
747
            for index, message in enumerate(messages):
                text = message["content"]
                image_tags = re.findall(pattern, text)
                text_chunks = text.split(pattern)
                final_text = ""
                for i in range(len(image_tags)):
                    final_text = (
                        final_text
                        + text_chunks[i]
                        + image_processor.get_slice_image_placeholder(
chenych's avatar
chenych committed
748
                            image_sizes[0][idx], idx, max_slice_nums, use_image_id
luopl's avatar
luopl committed
749
750
                        )
                    )
chenych's avatar
chenych committed
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
                    idx += 1

                final_text += text_chunks[-1]
                messages[index]["content"] = final_text

        if audio_inputs:
            pattern = "(<audio>./</audio>)"
            idx = 0
            for index, message in enumerate(messages):
                text = message["content"]
                audio_tags = re.findall(pattern, text)
                text_chunks = text.split(pattern)
                final_text = ""
                for i in range(len(audio_tags)):
                    audio_placeholder = audio_inputs["audio_phs"][0][idx]
                    final_text = final_text + text_chunks[i] + audio_placeholder
                    idx += 1
luopl's avatar
luopl committed
768
769
770
771
772
773
774
775
776
777

                final_text += text_chunks[-1]
                messages[index]["content"] = final_text

        if len(images) != num_image_tokens:
            raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")

        if len(videos) != num_video_tokens:
            raise ValueError(f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens.")

chenych's avatar
chenych committed
778
779
780
        if len(audios) != num_audio_tokens:
            raise ValueError(f"The number of audios does not match the number of {AUDIO_PLACEHOLDER} tokens.")

luopl's avatar
luopl committed
781
782
783
784
785
        return messages

    @override
    def _get_mm_inputs(
        self,
chenych's avatar
chenych committed
786
787
788
789
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "MMProcessor",
luopl's avatar
luopl committed
790
        **kwargs,
chenych's avatar
chenych committed
791
792
    ) -> dict[str, "torch.Tensor"]:
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
luopl's avatar
luopl committed
793
794
795
796
        mm_inputs = {}
        if len(images) != 0:
            images = self._regularize_images(
                images,
chenych's avatar
chenych committed
797
798
                image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
chenych's avatar
chenych committed
799
            )["images"]
luopl's avatar
luopl committed
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
            if "valid_image_nums_ls" in kwargs:
                valid_image_nums_ls = kwargs["valid_image_nums_ls"]
                new_images = []
                idx = 0
                for valid_image_nums in valid_image_nums_ls:
                    new_images.append(images[idx : idx + valid_image_nums])
                    idx += valid_image_nums

                images = new_images

            image_inputs = image_processor(
                images, do_pad=True, max_slice_nums=image_processor.max_slice_nums, return_tensors="pt"
            )
            mm_inputs.update(image_inputs)

        if len(videos) != 0:
            videos = self._regularize_videos(
                videos,
chenych's avatar
chenych committed
818
819
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
luopl's avatar
luopl committed
820
                video_fps=getattr(processor, "video_fps", 2.0),
chenych's avatar
chenych committed
821
                video_maxlen=getattr(processor, "video_maxlen", 128),
chenych's avatar
chenych committed
822
            )["videos"]
luopl's avatar
luopl committed
823
824
825
            video_inputs = image_processor(videos, do_pad=True, max_slice_nums=2, return_tensors="pt")
            mm_inputs.update(video_inputs)

chenych's avatar
chenych committed
826
827
828
        if len(audios) != 0:
            audios = self._regularize_audios(
                audios,
chenych's avatar
chenych committed
829
830
                sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
            )["audios"]
chenych's avatar
chenych committed
831
832
833
834
835
836
837
838
839
840
841
842
843
            if "valid_audio_nums_ls" in kwargs:
                valid_audio_nums_ls = kwargs["valid_audio_nums_ls"]
                audios_ls = []
                idx = 0
                for valid_audio_nums in valid_audio_nums_ls:
                    audios_ls.append(audios[idx : idx + valid_audio_nums])
                    idx += valid_audio_nums
            else:
                audios_ls = [audios]

            audio_features, audio_feature_lens, audio_phs = processor.audio_feature_extract(
                audios_ls,
                chunk_input=True,
chenych's avatar
chenych committed
844
                sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
chenych's avatar
chenych committed
845
846
847
848
849
850
            )
            audio_feature_lens = [torch.tensor(audio_feature_len) for audio_feature_len in audio_feature_lens]
            mm_inputs.update({"audio_features": audio_features, "audio_feature_lens": audio_feature_lens})
            if kwargs.get("ret_phs", False):
                mm_inputs.update({"audio_phs": audio_phs})

luopl's avatar
luopl committed
851
852
853
854
855
        return mm_inputs

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
856
857
858
859
860
861
862
863
864
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
865
866
        self._validate_input(processor, images, videos, audios)
        # image bound
luopl's avatar
luopl committed
867
868
        image_bounds_list = []
        valid_image_nums_ls = []
chenych's avatar
chenych committed
869
        for i, input_ids in enumerate(batch_ids):
luopl's avatar
luopl committed
870
871
872
873
874
875
876
877
            input_ids_ = torch.tensor(input_ids)
            start_cond = (input_ids_ == processor.tokenizer.im_start_id) | (
                input_ids_ == processor.tokenizer.slice_start_id
            )
            end_cond = (input_ids_ == processor.tokenizer.im_end_id) | (input_ids_ == processor.tokenizer.slice_end_id)
            image_start_tokens = torch.where(start_cond)[0]
            image_start_tokens += 1
            image_end_tokens = torch.where(end_cond)[0]
chenych's avatar
chenych committed
878
            valid_image_nums_ls.append(imglens[i])
luopl's avatar
luopl committed
879
880
            image_bounds = torch.hstack(
                [
chenych's avatar
chenych committed
881
882
                    image_start_tokens.unsqueeze(-1),
                    image_end_tokens.unsqueeze(-1),
luopl's avatar
luopl committed
883
884
885
886
                ]
            )
            image_bounds_list.append(image_bounds)

chenych's avatar
chenych committed
887
888
889
890
891
        mm_inputs = self._get_mm_inputs(images, videos, [], processor, valid_image_nums_ls=valid_image_nums_ls)
        if "tgt_sizes" not in mm_inputs:
            dummy_data = [torch.empty(0) for _ in range(len(batch_ids))]
            mm_inputs.update({"tgt_sizes": dummy_data, "pixel_values": dummy_data, "image_sizes": dummy_data})

luopl's avatar
luopl committed
892
        mm_inputs.update({"image_bound": image_bounds_list})
chenych's avatar
chenych committed
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918

        if len(audios) > 0:
            # audio bound
            audio_bounds_ls = []
            spk_bounds_ls = []
            valid_audio_nums_ls = []

            for input_ids, audiolen in zip(batch_ids, audlens):
                input_ids_ = torch.tensor(input_ids)
                audio_start_idx = torch.where(input_ids_ == processor.tokenizer.audio_start_id)[0]
                audio_end_idx = torch.where(input_ids_ == processor.tokenizer.audio_end_id)[0]
                assert len(audio_start_idx) == len(audio_end_idx)
                audio_bounds = torch.hstack([(audio_start_idx + 1).unsqueeze(-1), audio_end_idx.unsqueeze(-1)])
                audio_bounds_ls.append(audio_bounds)
                valid_audio_nums_ls.append(audiolen)

                spk_start_idx = torch.where(input_ids_ == processor.tokenizer.spk_start_id)[0]
                spk_end_idx = torch.where(input_ids_ == processor.tokenizer.spk_end_id)[0]
                assert len(spk_start_idx) == len(spk_end_idx)
                spk_bounds = torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
                spk_bounds_ls.append(spk_bounds)

            audio_inputs = self._get_mm_inputs([], [], audios, processor, valid_audio_nums_ls=valid_audio_nums_ls)
            mm_inputs.update(audio_inputs)
            mm_inputs.update({"audio_bounds": audio_bounds_ls, "spk_bounds": spk_bounds_ls})

luopl's avatar
luopl committed
919
920
921
        return mm_inputs


chenych's avatar
chenych committed
922
@dataclass
luopl's avatar
luopl committed
923
924
925
926
class MllamaPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
927
928
929
930
931
932
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
933
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
934
935
936
937
938
939
940
941
942
943
944
945
        num_image_tokens = 0
        messages = deepcopy(messages)
        for message in messages:
            content = message["content"]
            num_image_tokens += content.count(IMAGE_PLACEHOLDER)
            message["content"] = content.replace(IMAGE_PLACEHOLDER, self.image_token)

        if len(images) != num_image_tokens:
            raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")

        return messages

chenych's avatar
chenych committed
946
    @override
luopl's avatar
luopl committed
947
948
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
949
950
951
952
953
954
955
956
957
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
958
959
960
961
        self._validate_input(processor, images, videos, audios)
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor, imglens)
        if mm_inputs:
            num_tiles = mm_inputs.pop("num_tiles")
chenych's avatar
chenych committed
962
963
            image_token_id: int = getattr(processor, "image_token_id")
            max_image_tiles: int = getattr(processor.image_processor, "max_image_tiles")
chenych's avatar
chenych committed
964
965
966
967
968
969
970
971
972
973
974
975
            cross_attention_token_mask = [
                get_cross_attention_token_mask(input_ids, image_token_id) for input_ids in batch_ids
            ]
            mm_inputs["cross_attention_mask"] = torch.from_numpy(
                convert_sparse_cross_attention_mask_to_dense(
                    cross_attention_token_mask,
                    num_tiles=num_tiles,
                    max_num_tiles=max_image_tiles,
                    length=max(len(input_ids) for input_ids in batch_ids),
                )
            )  # shape: (batch_size, length, max_num_images, max_num_tiles)

luopl's avatar
luopl committed
976
977
978
        return mm_inputs


chenych's avatar
chenych committed
979
@dataclass
luopl's avatar
luopl committed
980
981
982
983
class PaliGemmaPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
984
985
986
987
988
989
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
990
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
991
992
993
994
995
        num_image_tokens = 0
        messages = deepcopy(messages)
        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
chenych's avatar
chenych committed
996
                content = content.replace(IMAGE_PLACEHOLDER, "", 1)
luopl's avatar
luopl committed
997
                num_image_tokens += 1
luopl's avatar
luopl committed
998

chenych's avatar
chenych committed
999
            message["content"] = content
luopl's avatar
luopl committed
1000
1001

        if len(images) != num_image_tokens:
luopl's avatar
luopl committed
1002
            raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")
luopl's avatar
luopl committed
1003
1004
1005
1006
1007
1008

        return messages

    @override
    def process_token_ids(
        self,
chenych's avatar
chenych committed
1009
1010
1011
1012
1013
        input_ids: list[int],
        labels: Optional[list[int]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
luopl's avatar
luopl committed
1014
        tokenizer: "PreTrainedTokenizer",
chenych's avatar
chenych committed
1015
1016
        processor: Optional["MMProcessor"],
    ) -> tuple[list[int], Optional[list[int]]]:
chenych's avatar
chenych committed
1017
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
1018
        num_images = len(images)
chenych's avatar
chenych committed
1019
        image_seqlen = processor.image_seq_length if self.expand_mm_tokens else 0  # skip mm token
luopl's avatar
luopl committed
1020
        image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
chenych's avatar
chenych committed
1021
        input_ids = [image_token_id] * num_images * image_seqlen + input_ids
luopl's avatar
luopl committed
1022
        if labels is not None:
chenych's avatar
chenych committed
1023
            labels = [IGNORE_INDEX] * num_images * image_seqlen + labels
luopl's avatar
luopl committed
1024
1025
1026
1027
1028
1029

        return input_ids, labels

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1030
1031
1032
1033
1034
1035
1036
1037
1038
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1039
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
1040
        seqlens = [len(input_ids) for input_ids in batch_ids]
chenych's avatar
chenych committed
1041
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
luopl's avatar
luopl committed
1042
1043
1044
1045
        mm_inputs["token_type_ids"] = _get_paligemma_token_type_ids(imglens, seqlens, processor)
        return mm_inputs


chenych's avatar
chenych committed
1046
@dataclass
luopl's avatar
luopl committed
1047
1048
1049
1050
class PixtralPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1051
1052
1053
1054
1055
1056
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1057
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
1058
1059
        num_image_tokens = 0
        messages = deepcopy(messages)
chenych's avatar
chenych committed
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                # BC for transformers < 4.49.0
                if isinstance(mm_inputs["image_sizes"], list):
                    image_sizes = iter(mm_inputs["image_sizes"][0])
                else:
                    image_sizes = iter(mm_inputs["image_sizes"].tolist())
                image_break_token: str = getattr(processor, "image_break_token")
                image_end_token: str = getattr(processor, "image_end_token")
chenych's avatar
chenych committed
1070

luopl's avatar
luopl committed
1071
1072
1073
        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
luopl's avatar
luopl committed
1074
                if self.expand_mm_tokens:
chenych's avatar
chenych committed
1075
                    height, width = next(image_sizes)
chenych's avatar
chenych committed
1076
1077
1078
                    num_height_tokens = height // processor.patch_size
                    num_width_tokens = width // processor.patch_size
                    replace_tokens = [[self.image_token] * num_width_tokens + [image_break_token]] * num_height_tokens
luopl's avatar
luopl committed
1079
1080
1081
1082
                    replace_tokens = [item for sublist in replace_tokens for item in sublist]  # flatten list
                    replace_tokens[-1] = image_end_token
                    replace_str = "".join(replace_tokens)
                else:
chenych's avatar
chenych committed
1083
                    replace_str = self.image_token
luopl's avatar
luopl committed
1084

luopl's avatar
luopl committed
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
                content = content.replace(IMAGE_PLACEHOLDER, replace_str, 1)
                num_image_tokens += 1

            message["content"] = content

        if len(images) != num_image_tokens:
            raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")

        return messages

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1098
1099
1100
1101
1102
1103
1104
1105
1106
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1107
1108
        self._validate_input(processor, images, videos, audios)
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
chenych's avatar
chenych committed
1109
1110
1111
1112
1113
        # ref to this commit https://github.com/huggingface/transformers/pull/35122
        # after transformers 4.49.0, the `image_sizes` is mandatory as an input parameter for Pixtral VisionEncoder forwarding.
        # it can be passed into `LlavaConditionalGeneration` as a parameter.
        if not is_transformers_version_greater_than("4.49.0"):
            mm_inputs.pop("image_sizes", None)
luopl's avatar
luopl committed
1114
1115
1116
        return mm_inputs


chenych's avatar
chenych committed
1117
1118
1119
1120
1121
@dataclass
class Qwen2AudioPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1122
1123
1124
1125
1126
1127
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1128
1129
1130
        self._validate_input(processor, images, videos, audios)
        bos_token: str = getattr(processor, "audio_bos_token")
        eos_token: str = getattr(processor, "audio_eos_token")
chenych's avatar
chenych committed
1131
        num_audio_tokens = 0
chenych's avatar
chenych committed
1132
        messages = deepcopy(messages)
chenych's avatar
chenych committed
1133
1134
1135
1136
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs([], [], audios, processor)
            if "feature_attention_mask" in mm_inputs:
                audio_lengths = mm_inputs["feature_attention_mask"].sum(-1).tolist()
chenych's avatar
chenych committed
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162

        for message in messages:
            content = message["content"]
            while AUDIO_PLACEHOLDER in content:
                if self.expand_mm_tokens:
                    audio_length = audio_lengths.pop(0)
                    input_length = (audio_length - 1) // 2 + 1
                    audio_seqlen = (input_length - 2) // 2 + 1
                else:
                    audio_seqlen = 1

                content = content.replace(
                    AUDIO_PLACEHOLDER, f"{bos_token}{self.audio_token * audio_seqlen}{eos_token}", 1
                )
                num_audio_tokens += 1

            message["content"] = content

        if len(audios) != num_audio_tokens:
            raise ValueError(f"The number of audios does not match the number of {AUDIO_PLACEHOLDER} tokens.")

        return messages

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1163
1164
1165
1166
1167
1168
1169
1170
1171
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1172
1173
1174
1175
1176
1177
        self._validate_input(processor, images, videos, audios)
        return self._get_mm_inputs(images, videos, audios, processor)


@dataclass
class Qwen2VLPlugin(BasePlugin):
luopl's avatar
luopl committed
1178
1179
1180
1181
1182
    @override
    def _preprocess_image(self, image: "ImageObject", **kwargs) -> "ImageObject":
        image = super()._preprocess_image(image, **kwargs)
        if min(image.width, image.height) < 28:
            width, height = max(image.width, 28), max(image.height, 28)
chenych's avatar
chenych committed
1183
            image = image.resize((width, height))
luopl's avatar
luopl committed
1184
1185
1186

        if image.width / image.height > 200:
            width, height = image.height * 180, image.height
chenych's avatar
chenych committed
1187
            image = image.resize((width, height))
luopl's avatar
luopl committed
1188
1189
1190

        if image.height / image.width > 200:
            width, height = image.width, image.width * 180
chenych's avatar
chenych committed
1191
            image = image.resize((width, height))
luopl's avatar
luopl committed
1192
1193
1194
1195

        return image

    @override
chenych's avatar
chenych committed
1196
    def _regularize_videos(
chenych's avatar
chenych committed
1197
1198
        self, videos: list["VideoInput"], **kwargs
    ) -> dict[str, Union[list[list["ImageObject"]], list[float]]]:
chenych's avatar
chenych committed
1199
        results, fps_per_video = [], []
luopl's avatar
luopl committed
1200
1201
1202
        for video in videos:
            container = av.open(video, "r")
            video_stream = next(stream for stream in container.streams if stream.type == "video")
chenych's avatar
chenych committed
1203
            sample_indices = self._get_video_sample_indices(video_stream, **kwargs)
chenych's avatar
chenych committed
1204
            frames: list[ImageObject] = []
luopl's avatar
luopl committed
1205
1206
1207
1208
1209
1210
1211
1212
            container.seek(0)
            for frame_idx, frame in enumerate(container.decode(video_stream)):
                if frame_idx in sample_indices:
                    frames.append(frame.to_image())

            if len(frames) % 2 != 0:  # qwen2-vl requires even number of frames
                frames.append(frames[-1])

chenych's avatar
chenych committed
1213
            frames = self._regularize_images(frames, **kwargs)["images"]
luopl's avatar
luopl committed
1214
            results.append(frames)
chenych's avatar
chenych committed
1215
1216
1217
1218
            if video_stream.duration is None:
                fps_per_video.append(2.0)
            else:
                fps_per_video.append(len(sample_indices) / float(video_stream.duration * video_stream.time_base))
luopl's avatar
luopl committed
1219

chenych's avatar
chenych committed
1220
        return {"videos": results, "fps_per_video": fps_per_video}
chenych's avatar
chenych committed
1221
1222
1223
1224

    @override
    def _get_mm_inputs(
        self,
chenych's avatar
chenych committed
1225
1226
1227
1228
1229
1230
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "MMProcessor",
    ) -> dict[str, "torch.Tensor"]:
        image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
chenych's avatar
chenych committed
1231
1232
1233
1234
1235
1236
        mm_inputs = {}
        if len(images) != 0:
            images = self._regularize_images(
                images,
                image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
chenych's avatar
chenych committed
1237
            )["images"]
chenych's avatar
chenych committed
1238
1239
1240
            mm_inputs.update(image_processor(images, return_tensors="pt"))

        if len(videos) != 0:
chenych's avatar
chenych committed
1241
            video_data = self._regularize_videos(
chenych's avatar
chenych committed
1242
1243
1244
1245
1246
1247
                videos,
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
                video_fps=getattr(processor, "video_fps", 2.0),
                video_maxlen=getattr(processor, "video_maxlen", 128),
            )
chenych's avatar
chenych committed
1248
1249
1250
1251
            mm_inputs.update(image_processor(images=None, videos=video_data["videos"], return_tensors="pt"))
            temporal_patch_size: int = getattr(image_processor, "temporal_patch_size", 2)
            if "second_per_grid_ts" in processor.model_input_names:
                mm_inputs["second_per_grid_ts"] = [temporal_patch_size / fps for fps in video_data["fps_per_video"]]
chenych's avatar
chenych committed
1252
1253

        return mm_inputs
luopl's avatar
luopl committed
1254
1255
1256
1257

    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1258
1259
1260
1261
1262
1263
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1264
1265
1266
        self._validate_input(processor, images, videos, audios)
        num_image_tokens, num_video_tokens = 0, 0
        messages = deepcopy(messages)
chenych's avatar
chenych committed
1267
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
chenych's avatar
chenych committed
1268

luopl's avatar
luopl committed
1269
        merge_length: int = getattr(image_processor, "merge_size") ** 2
chenych's avatar
chenych committed
1270
1271
1272
1273
1274
1275
1276
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            image_grid_thw = mm_inputs.get("image_grid_thw", [])
            video_grid_thw = mm_inputs.get("video_grid_thw", [])
        else:
            image_grid_thw = [None] * len(images)
            video_grid_thw = [None] * len(videos)
luopl's avatar
luopl committed
1277
1278
1279
1280
1281

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                if num_image_tokens >= len(image_grid_thw):
luopl's avatar
luopl committed
1282
                    raise ValueError(f"`len(images)` is less than the number of {IMAGE_PLACEHOLDER} tokens.")
luopl's avatar
luopl committed
1283

luopl's avatar
luopl committed
1284
                image_seqlen = image_grid_thw[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
luopl's avatar
luopl committed
1285
                content = content.replace(
luopl's avatar
luopl committed
1286
                    IMAGE_PLACEHOLDER, f"<|vision_start|>{self.image_token * image_seqlen}<|vision_end|>", 1
luopl's avatar
luopl committed
1287
1288
1289
1290
1291
                )
                num_image_tokens += 1

            while VIDEO_PLACEHOLDER in content:
                if num_video_tokens >= len(video_grid_thw):
luopl's avatar
luopl committed
1292
                    raise ValueError(f"`len(videos)` is less than the number of {VIDEO_PLACEHOLDER} tokens.")
luopl's avatar
luopl committed
1293

luopl's avatar
luopl committed
1294
                video_seqlen = video_grid_thw[num_video_tokens].prod() // merge_length if self.expand_mm_tokens else 1
luopl's avatar
luopl committed
1295
                content = content.replace(
luopl's avatar
luopl committed
1296
                    VIDEO_PLACEHOLDER, f"<|vision_start|>{self.video_token * video_seqlen}<|vision_end|>", 1
luopl's avatar
luopl committed
1297
1298
1299
1300
1301
1302
                )
                num_video_tokens += 1

            message["content"] = content

        if len(images) != num_image_tokens:
luopl's avatar
luopl committed
1303
            raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")
luopl's avatar
luopl committed
1304
1305

        if len(videos) != num_video_tokens:
luopl's avatar
luopl committed
1306
            raise ValueError(f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens.")
luopl's avatar
luopl committed
1307
1308
1309

        return messages

chenych's avatar
chenych committed
1310
1311

class Qwen2OmniPlugin(Qwen2VLPlugin):
luopl's avatar
luopl committed
1312
    @override
chenych's avatar
chenych committed
1313
    def _get_mm_inputs(
luopl's avatar
luopl committed
1314
        self,
chenych's avatar
chenych committed
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "MMProcessor",
    ) -> dict[str, "torch.Tensor"]:
        image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
        feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
        mm_inputs = {}
        if len(images) != 0:
            images = self._regularize_images(
                images,
                image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
            )["images"]
            mm_inputs.update(image_processor(images, return_tensors="pt"))
chenych's avatar
chenych committed
1330

chenych's avatar
chenych committed
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
        if len(videos) != 0:
            video_dict = self._regularize_videos(
                videos,
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
                video_fps=getattr(processor, "video_fps", 2.0),
                video_maxlen=getattr(processor, "video_maxlen", 128),
            )
            mm_inputs.update(image_processor(images=None, videos=video_dict["videos"], return_tensors="pt"))
            temporal_patch_size: int = getattr(image_processor, "temporal_patch_size", 2)
            mm_inputs["video_second_per_grid"] = torch.tensor(
                [temporal_patch_size / fps for fps in video_dict["fps_per_video"]]
            )

        if len(audios) != 0:
            audios = self._regularize_audios(
                audios,
                sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
            )["audios"]
            mm_inputs.update(
                feature_extractor(
                    audios,
                    sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
                    return_attention_mask=True,
                    padding="max_length",
                    return_tensors="pt",
                )
            )
            mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask")  # prevent conflicts
luopl's avatar
luopl committed
1360

chenych's avatar
chenych committed
1361
        return mm_inputs
luopl's avatar
luopl committed
1362
1363
1364
1365

    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1366
1367
1368
1369
1370
1371
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1372
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
1373
        messages = deepcopy(messages)
chenych's avatar
chenych committed
1374
1375
1376
1377
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
        else:
            mm_inputs = {}
luopl's avatar
luopl committed
1378

chenych's avatar
chenych committed
1379
1380
        num_audio_tokens, num_image_tokens, num_video_tokens = 0, 0, 0
        use_audio_in_video = getattr(processor, "use_audio_in_video", False)
luopl's avatar
luopl committed
1381

chenych's avatar
chenych committed
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
        # get length or size from mm_inputs
        if "feature_attention_mask" in mm_inputs:
            input_lengths = (mm_inputs["feature_attention_mask"].sum(-1).numpy() - 1) // 2 + 1
            audio_lengths = (input_lengths - 2) // 2 + 1

        if mm_inputs.get("image_grid_thw", None) is not None:
            image_grid_thw = mm_inputs["image_grid_thw"]
            merge_length = processor.image_processor.merge_size**2

        if mm_inputs.get("video_grid_thw", None) is not None:
            video_grid_thw = mm_inputs["video_grid_thw"]
            merge_length = processor.image_processor.merge_size**2

        if use_audio_in_video:
            if audio_lengths is None:
                raise ValueError("audio_lengths should exist when use_audio_in_video is `True`.")

            if not mm_inputs.get("video_grid_thw", None):
                raise ValueError("video_grid_thw should exist when use_audio_in_video is `True`.")

            positions_list = []
            for i, message in enumerate(messages):  # get multimodal index when use_audio
                positions = []
                for special_token in [self.audio_token, self.image_token, self.video_token]:
                    start = 0
                    while True:
                        pos = message[i].find(special_token, start)
                        if pos == -1:
                            break
                        positions.append((pos, special_token))
                        start = pos + len(special_token)

                positions_list.append(positions.sort(key=lambda x: x[0]))

        for message in messages:
            content = message["content"]
            # separate with audio-video
            while IMAGE_PLACEHOLDER in content:
                image_token_replace_length = image_grid_thw[num_image_tokens].prod() // merge_length
                content = content.replace(
                    IMAGE_PLACEHOLDER,
                    f"<|vision_bos|>{self.image_token * image_token_replace_length}<|vision_eos|>",
                    1,
                )
                num_image_tokens += 1
luopl's avatar
luopl committed
1427

chenych's avatar
chenych committed
1428
1429
1430
1431
1432
1433
1434
1435
1436
            if not use_audio_in_video:
                while AUDIO_PLACEHOLDER in content:
                    audio_token_replace_length = audio_lengths[num_audio_tokens]
                    content = content.replace(
                        AUDIO_PLACEHOLDER,
                        f"<|audio_bos|>{self.audio_token * audio_token_replace_length}<|audio_eos|>",
                        1,
                    )
                    num_audio_tokens += 1
luopl's avatar
luopl committed
1437

chenych's avatar
chenych committed
1438
                # TODO handle video_input and use_audio_in_video
luopl's avatar
luopl committed
1439
                while VIDEO_PLACEHOLDER in content:
chenych's avatar
chenych committed
1440
1441
1442
1443
                    video_replace_length = video_grid_thw[num_video_tokens].prod() // merge_length
                    content = content.replace(
                        VIDEO_PLACEHOLDER, f"<|vision_bos|>{self.video_token * video_replace_length}<|vision_eos|>", 1
                    )
luopl's avatar
luopl committed
1444
                    num_video_tokens += 1
luopl's avatar
luopl committed
1445

chenych's avatar
chenych committed
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
            else:  # if use the audio of video # deal video token and audio token togather
                while VIDEO_PLACEHOLDER in content:
                    audio_t_index = torch.arange(audio_lengths[num_audio_tokens])
                    video_t_index = (
                        torch.arange(video_grid_thw[num_video_tokens][0])
                        .view(-1, 1, 1)
                        .expand(
                            -1,
                            video_grid_thw[num_video_tokens][1] // self.image_processor.merge_size,
                            video_grid_thw[num_video_tokens][2] // self.image_processor.merge_size,
                        )
                        .flatten()
                        * mm_inputs["video_second_per_grid"][num_video_tokens]
                        * 25  # FIXME hardcode of position_id_per_seconds=25
                    ).long()
                    t_ntoken_per_chunk = 50  # FIXME hardcode: [25 * 2]
                    video_chunk_indices = processor.get_chunked_index(video_t_index, t_ntoken_per_chunk)
                    audio_chunk_indices = self.get_chunked_index(audio_t_index, t_ntoken_per_chunk)
                    placeholder_string = ""
                    for j in range(max(len(video_chunk_indices), len(audio_chunk_indices))):
                        video_chunk_index = video_chunk_indices[j] if j < len(video_chunk_indices) else None
                        audio_chunk_index = audio_chunk_indices[j] if j < len(audio_chunk_indices) else None
                        placeholder_string = "<|vision_bos|>" + "<|audio_bos|>"
                        if video_chunk_index is not None:
                            placeholder_string += self.video_token * (video_chunk_index[1] - video_chunk_index[0])
                        if audio_chunk_index is not None:
                            placeholder_string += self.audio_token * (audio_chunk_index[1] - audio_chunk_index[0])
                        placeholder_string += "<|audio_eos|>" + "<|vision_eos|>"

                    content = content.replace(VIDEO_PLACEHOLDER, placeholder_string, 1)
                    content = content.replace(AUDIO_PLACEHOLDER, "", 1)
                    num_audio_tokens += 1
                    num_video_tokens += 1

            message["content"] = content

        if len(audios) != num_audio_tokens:
            raise ValueError(f"The number of audios does not match the number of {AUDIO_PLACEHOLDER} tokens.")
luopl's avatar
luopl committed
1484
1485

        if len(images) != num_image_tokens:
luopl's avatar
luopl committed
1486
            raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")
luopl's avatar
luopl committed
1487
1488

        if len(videos) != num_video_tokens:
luopl's avatar
luopl committed
1489
            raise ValueError(f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens.")
luopl's avatar
luopl committed
1490
1491
1492

        return messages

chenych's avatar
chenych committed
1493
1494
1495

@dataclass
class VideoLlavaPlugin(BasePlugin):
luopl's avatar
luopl committed
1496
    @override
chenych's avatar
chenych committed
1497
    def process_messages(
luopl's avatar
luopl committed
1498
        self,
chenych's avatar
chenych committed
1499
1500
1501
1502
1503
1504
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1505
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
        num_image_tokens, num_video_tokens = 0, 0
        messages = deepcopy(messages)
        num_frames = 0
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values_images" in mm_inputs:
                height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values_images"][0]))
                num_frames = 1

            if "pixel_values_videos" in mm_inputs:
                one_video = to_numpy_array(mm_inputs["pixel_values_videos"][0])
                height, width = get_image_size(one_video[0])
                num_frames = one_video.shape[0]  # frame dim is always after batch dim

            if "pixel_values_images" in mm_inputs or "pixel_values_videos" in mm_inputs:
                image_seqlen = (height // processor.patch_size) * (
                    width // processor.patch_size
                ) + processor.num_additional_image_tokens
                video_seqlen = image_seqlen * num_frames
                if processor.vision_feature_select_strategy == "default":
                    image_seqlen -= 1
        else:
            image_seqlen, video_seqlen = 1, 1

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)
                num_image_tokens += 1

            while VIDEO_PLACEHOLDER in content:
                content = content.replace(VIDEO_PLACEHOLDER, "{{video}}" * video_seqlen, 1)
                num_video_tokens += 1

            content = content.replace("{{image}}", self.image_token)
            message["content"] = content.replace("{{video}}", self.video_token)

        if len(images) != num_image_tokens:
            raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")

        if len(videos) != num_video_tokens:
            raise ValueError(f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens.")

        return messages
luopl's avatar
luopl committed
1550
1551
1552
1553


PLUGINS = {
    "base": BasePlugin,
chenych's avatar
chenych committed
1554
1555
    "gemma3": Gemma3Plugin,
    "llama4": Llama4Plugin,
luopl's avatar
luopl committed
1556
1557
1558
    "llava": LlavaPlugin,
    "llava_next": LlavaNextPlugin,
    "llava_next_video": LlavaNextVideoPlugin,
luopl's avatar
luopl committed
1559
1560
    "minicpm_v": MiniCPMVPlugin,
    "mllama": MllamaPlugin,
luopl's avatar
luopl committed
1561
    "paligemma": PaliGemmaPlugin,
luopl's avatar
luopl committed
1562
    "pixtral": PixtralPlugin,
chenych's avatar
chenych committed
1563
    "qwen2_audio": Qwen2AudioPlugin,
chenych's avatar
chenych committed
1564
    "qwen2_omni": Qwen2OmniPlugin,
chenych's avatar
chenych committed
1565
    "qwen2_vl": Qwen2VLPlugin,
luopl's avatar
luopl committed
1566
1567
1568
1569
    "video_llava": VideoLlavaPlugin,
}


chenych's avatar
chenych committed
1570
1571
def register_mm_plugin(name: str, plugin_class: type["BasePlugin"]) -> None:
    r"""Register a multimodal plugin."""
chenych's avatar
chenych committed
1572
1573
1574
1575
1576
1577
    if name in PLUGINS:
        raise ValueError(f"Multimodal plugin {name} already exists.")

    PLUGINS[name] = plugin_class


luopl's avatar
luopl committed
1578
1579
1580
1581
def get_mm_plugin(
    name: str,
    image_token: Optional[str] = None,
    video_token: Optional[str] = None,
chenych's avatar
chenych committed
1582
    audio_token: Optional[str] = None,
luopl's avatar
luopl committed
1583
) -> "BasePlugin":
chenych's avatar
chenych committed
1584
    r"""Get plugin for multimodal inputs."""
chenych's avatar
chenych committed
1585
    if name not in PLUGINS:
luopl's avatar
luopl committed
1586
        raise ValueError(f"Multimodal plugin `{name}` not found.")
luopl's avatar
luopl committed
1587

chenych's avatar
chenych committed
1588
    return PLUGINS[name](image_token, video_token, audio_token)