"tests/test_models/test_detectors/test_sassd.py" did not exist on "c2d958aa45a9ef7b8b16f845c214cb872f1f3343"
runner.py 21.5 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

luopl's avatar
luopl committed
15
import json
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
16
import os
chenych's avatar
chenych committed
17
18
19
from copy import deepcopy
from subprocess import Popen, TimeoutExpired
from typing import TYPE_CHECKING, Any, Dict, Generator, Optional
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
20
21

from transformers.trainer import TRAINING_ARGS_NAME
luopl's avatar
luopl committed
22
from transformers.utils import is_torch_npu_available
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
23

chenych's avatar
chenych committed
24
from ..extras.constants import LLAMABOARD_CONFIG, PEFT_METHODS, TRAINING_STAGES
luopl's avatar
luopl committed
25
from ..extras.misc import is_gpu_or_npu_available, torch_gc, use_ray
chenych's avatar
chenych committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from ..extras.packages import is_gradio_available
from .common import (
    DEFAULT_CACHE_DIR,
    DEFAULT_CONFIG_DIR,
    abort_process,
    gen_cmd,
    get_save_dir,
    load_args,
    load_config,
    load_eval_results,
    save_args,
    save_cmd,
)
from .control import get_trainer_info
chenych's avatar
chenych committed
40
from .locales import ALERTS, LOCALES
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
41
42
43
44
45
46
47
48
49
50
51
52
53


if is_gradio_available():
    import gradio as gr


if TYPE_CHECKING:
    from gradio.components import Component

    from .manager import Manager


class Runner:
chenych's avatar
chenych committed
54
55
56
57
    r"""
    A class to manage the running status of the trainers.
    """

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
58
59
60
61
    def __init__(self, manager: "Manager", demo_mode: bool = False) -> None:
        self.manager = manager
        self.demo_mode = demo_mode
        """ Resume """
chenych's avatar
chenych committed
62
        self.trainer: Optional["Popen"] = None
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
63
64
65
66
67
68
69
70
        self.do_train = True
        self.running_data: Dict["Component", Any] = None
        """ State """
        self.aborted = False
        self.running = False

    def set_abort(self) -> None:
        self.aborted = True
chenych's avatar
chenych committed
71
72
        if self.trainer is not None:
            abort_process(self.trainer.pid)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
73
74

    def _initialize(self, data: Dict["Component", Any], do_train: bool, from_preview: bool) -> str:
chenych's avatar
chenych committed
75
76
77
        r"""
        Validates the configuration.
        """
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
78
79
80
81
82
83
84
85
86
87
88
89
90
        get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
        lang, model_name, model_path = get("top.lang"), get("top.model_name"), get("top.model_path")
        dataset = get("train.dataset") if do_train else get("eval.dataset")

        if self.running:
            return ALERTS["err_conflict"][lang]

        if not model_name:
            return ALERTS["err_no_model"][lang]

        if not model_path:
            return ALERTS["err_no_path"][lang]

chenych's avatar
chenych committed
91
        if not dataset:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
92
93
94
95
96
97
            return ALERTS["err_no_dataset"][lang]

        if not from_preview and self.demo_mode:
            return ALERTS["err_demo"][lang]

        if do_train:
chenych's avatar
chenych committed
98
99
100
            if not get("train.output_dir"):
                return ALERTS["err_no_output_dir"][lang]

luopl's avatar
luopl committed
101
102
103
104
105
            try:
                json.loads(get("train.extra_args"))
            except json.JSONDecodeError:
                return ALERTS["err_json_schema"][lang]

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
106
            stage = TRAINING_STAGES[get("train.training_stage")]
chenych's avatar
chenych committed
107
            if stage == "ppo" and not get("train.reward_model"):
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
108
                return ALERTS["err_no_reward_model"][lang]
chenych's avatar
chenych committed
109
110
111
        else:
            if not get("eval.output_dir"):
                return ALERTS["err_no_output_dir"][lang]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
112

chenych's avatar
chenych committed
113
        if not from_preview and not is_gpu_or_npu_available():
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
114
115
116
117
118
            gr.Warning(ALERTS["warn_no_cuda"][lang])

        return ""

    def _finalize(self, lang: str, finish_info: str) -> str:
chenych's avatar
chenych committed
119
120
121
        r"""
        Cleans the cached memory and resets the runner.
        """
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
122
        finish_info = ALERTS["info_aborted"][lang] if self.aborted else finish_info
luopl's avatar
luopl committed
123
        gr.Info(finish_info)
chenych's avatar
chenych committed
124
        self.trainer = None
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
125
126
127
128
129
130
131
        self.aborted = False
        self.running = False
        self.running_data = None
        torch_gc()
        return finish_info

    def _parse_train_args(self, data: Dict["Component", Any]) -> Dict[str, Any]:
chenych's avatar
chenych committed
132
133
134
        r"""
        Builds and validates the training arguments.
        """
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
135
        get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
chenych's avatar
chenych committed
136
        model_name, finetuning_type = get("top.model_name"), get("top.finetuning_type")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
137
138
139
140
141
142
143
        user_config = load_config()

        args = dict(
            stage=TRAINING_STAGES[get("train.training_stage")],
            do_train=True,
            model_name_or_path=get("top.model_path"),
            cache_dir=user_config.get("cache_dir", None),
chenych's avatar
chenych committed
144
145
            preprocessing_num_workers=16,
            finetuning_type=finetuning_type,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
146
            template=get("top.template"),
chenych's avatar
chenych committed
147
            rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") != "none" else None,
chenych's avatar
chenych committed
148
            flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
149
            use_unsloth=(get("top.booster") == "unsloth"),
luopl's avatar
luopl committed
150
            enable_liger_kernel=(get("top.booster") == "liger_kernel"),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
            dataset_dir=get("train.dataset_dir"),
            dataset=",".join(get("train.dataset")),
            cutoff_len=get("train.cutoff_len"),
            learning_rate=float(get("train.learning_rate")),
            num_train_epochs=float(get("train.num_train_epochs")),
            max_samples=int(get("train.max_samples")),
            per_device_train_batch_size=get("train.batch_size"),
            gradient_accumulation_steps=get("train.gradient_accumulation_steps"),
            lr_scheduler_type=get("train.lr_scheduler_type"),
            max_grad_norm=float(get("train.max_grad_norm")),
            logging_steps=get("train.logging_steps"),
            save_steps=get("train.save_steps"),
            warmup_steps=get("train.warmup_steps"),
            neftune_noise_alpha=get("train.neftune_alpha") or None,
chenych's avatar
chenych committed
165
166
167
168
            packing=get("train.packing") or get("train.neat_packing"),
            neat_packing=get("train.neat_packing"),
            train_on_prompt=get("train.train_on_prompt"),
            mask_history=get("train.mask_history"),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
169
170
            resize_vocab=get("train.resize_vocab"),
            use_llama_pro=get("train.use_llama_pro"),
chenych's avatar
chenych committed
171
            report_to=get("train.report_to"),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
172
            use_galore=get("train.use_galore"),
luopl's avatar
luopl committed
173
            use_apollo=get("train.use_apollo"),
chenych's avatar
chenych committed
174
            use_badam=get("train.use_badam"),
luopl's avatar
luopl committed
175
            use_swanlab=get("train.use_swanlab"),
chenych's avatar
chenych committed
176
            output_dir=get_save_dir(model_name, finetuning_type, get("train.output_dir")),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
177
178
179
            fp16=(get("train.compute_type") == "fp16"),
            bf16=(get("train.compute_type") == "bf16"),
            pure_bf16=(get("train.compute_type") == "pure_bf16"),
chenych's avatar
chenych committed
180
            plot_loss=True,
luopl's avatar
luopl committed
181
            trust_remote_code=True,
chenych's avatar
chenych committed
182
            ddp_timeout=180000000,
chenych's avatar
chenych committed
183
            include_num_input_tokens_seen=True,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
184
        )
luopl's avatar
luopl committed
185
        args.update(json.loads(get("train.extra_args")))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
186

chenych's avatar
chenych committed
187
188
189
190
191
192
193
194
195
196
        # checkpoints
        if get("top.checkpoint_path"):
            if finetuning_type in PEFT_METHODS:  # list
                args["adapter_name_or_path"] = ",".join(
                    [get_save_dir(model_name, finetuning_type, adapter) for adapter in get("top.checkpoint_path")]
                )
            else:  # str
                args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, get("top.checkpoint_path"))

        # quantization
chenych's avatar
chenych committed
197
        if get("top.quantization_bit") != "none":
chenych's avatar
chenych committed
198
199
            args["quantization_bit"] = int(get("top.quantization_bit"))
            args["quantization_method"] = get("top.quantization_method")
luopl's avatar
luopl committed
200
            args["double_quantization"] = not is_torch_npu_available()
chenych's avatar
chenych committed
201
202

        # freeze config
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
203
        if args["finetuning_type"] == "freeze":
chenych's avatar
chenych committed
204
205
206
207
208
209
            args["freeze_trainable_layers"] = get("train.freeze_trainable_layers")
            args["freeze_trainable_modules"] = get("train.freeze_trainable_modules")
            args["freeze_extra_modules"] = get("train.freeze_extra_modules") or None

        # lora config
        if args["finetuning_type"] == "lora":
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
210
211
212
213
214
215
216
            args["lora_rank"] = get("train.lora_rank")
            args["lora_alpha"] = get("train.lora_alpha")
            args["lora_dropout"] = get("train.lora_dropout")
            args["loraplus_lr_ratio"] = get("train.loraplus_lr_ratio") or None
            args["create_new_adapter"] = get("train.create_new_adapter")
            args["use_rslora"] = get("train.use_rslora")
            args["use_dora"] = get("train.use_dora")
chenych's avatar
chenych committed
217
218
219
            args["pissa_init"] = get("train.use_pissa")
            args["pissa_convert"] = get("train.use_pissa")
            args["lora_target"] = get("train.lora_target") or "all"
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
220
221
222
            args["additional_target"] = get("train.additional_target") or None

            if args["use_llama_pro"]:
chenych's avatar
chenych committed
223
                args["freeze_trainable_layers"] = get("train.freeze_trainable_layers")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
224

chenych's avatar
chenych committed
225
        # rlhf config
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
226
        if args["stage"] == "ppo":
chenych's avatar
chenych committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
            if finetuning_type in PEFT_METHODS:
                args["reward_model"] = ",".join(
                    [get_save_dir(model_name, finetuning_type, adapter) for adapter in get("train.reward_model")]
                )
            else:
                args["reward_model"] = get_save_dir(model_name, finetuning_type, get("train.reward_model"))

            args["reward_model_type"] = "lora" if finetuning_type == "lora" else "full"
            args["ppo_score_norm"] = get("train.ppo_score_norm")
            args["ppo_whiten_rewards"] = get("train.ppo_whiten_rewards")
            args["top_k"] = 0
            args["top_p"] = 0.9
        elif args["stage"] in ["dpo", "kto"]:
            args["pref_beta"] = get("train.pref_beta")
            args["pref_ftx"] = get("train.pref_ftx")
            args["pref_loss"] = get("train.pref_loss")

        # galore config
        if args["use_galore"]:
            args["galore_rank"] = get("train.galore_rank")
            args["galore_update_interval"] = get("train.galore_update_interval")
            args["galore_scale"] = get("train.galore_scale")
            args["galore_target"] = get("train.galore_target")

luopl's avatar
luopl committed
251
252
253
254
255
256
257
        # apollo config
        if args["use_apollo"]:
            args["apollo_rank"] = get("train.apollo_rank")
            args["apollo_update_interval"] = get("train.apollo_update_interval")
            args["apollo_scale"] = get("train.apollo_scale")
            args["apollo_target"] = get("train.apollo_target")

chenych's avatar
chenych committed
258
259
260
261
262
263
        # badam config
        if args["use_badam"]:
            args["badam_mode"] = get("train.badam_mode")
            args["badam_switch_mode"] = get("train.badam_switch_mode")
            args["badam_switch_interval"] = get("train.badam_switch_interval")
            args["badam_update_ratio"] = get("train.badam_update_ratio")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
264

chenych's avatar
chenych committed
265
266
267
268
269
270
        # report_to
        if "none" in args["report_to"]:
            args["report_to"] = "none"
        elif "all" in args["report_to"]:
            args["report_to"] = "all"

luopl's avatar
luopl committed
271
272
273
274
275
276
277
278
        # swanlab config
        if get("train.use_swanlab"):
            args["swanlab_project"] = get("train.swanlab_project")
            args["swanlab_run_name"] = get("train.swanlab_run_name")
            args["swanlab_workspace"] = get("train.swanlab_workspace")
            args["swanlab_api_key"] = get("train.swanlab_api_key")
            args["swanlab_mode"] = get("train.swanlab_mode")

chenych's avatar
chenych committed
279
        # eval config
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
280
281
        if get("train.val_size") > 1e-6 and args["stage"] != "ppo":
            args["val_size"] = get("train.val_size")
chenych's avatar
chenych committed
282
            args["eval_strategy"] = "steps"
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
283
284
285
            args["eval_steps"] = args["save_steps"]
            args["per_device_eval_batch_size"] = args["per_device_train_batch_size"]

chenych's avatar
chenych committed
286
287
288
289
        # ds config
        if get("train.ds_stage") != "none":
            ds_stage = get("train.ds_stage")
            ds_offload = "offload_" if get("train.ds_offload") else ""
luopl's avatar
luopl committed
290
            args["deepspeed"] = os.path.join(DEFAULT_CACHE_DIR, f"ds_z{ds_stage}_{ds_offload}config.json")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
291
292
293
294

        return args

    def _parse_eval_args(self, data: Dict["Component", Any]) -> Dict[str, Any]:
chenych's avatar
chenych committed
295
296
297
        r"""
        Builds and validates the evaluation arguments.
        """
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
298
        get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
chenych's avatar
chenych committed
299
        model_name, finetuning_type = get("top.model_name"), get("top.finetuning_type")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
300
301
302
303
304
305
        user_config = load_config()

        args = dict(
            stage="sft",
            model_name_or_path=get("top.model_path"),
            cache_dir=user_config.get("cache_dir", None),
chenych's avatar
chenych committed
306
307
308
            preprocessing_num_workers=16,
            finetuning_type=finetuning_type,
            quantization_method=get("top.quantization_method"),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
309
            template=get("top.template"),
chenych's avatar
chenych committed
310
            rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") != "none" else None,
chenych's avatar
chenych committed
311
            flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
312
313
            use_unsloth=(get("top.booster") == "unsloth"),
            dataset_dir=get("eval.dataset_dir"),
chenych's avatar
chenych committed
314
            eval_dataset=",".join(get("eval.dataset")),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
315
316
317
318
319
320
321
            cutoff_len=get("eval.cutoff_len"),
            max_samples=int(get("eval.max_samples")),
            per_device_eval_batch_size=get("eval.batch_size"),
            predict_with_generate=True,
            max_new_tokens=get("eval.max_new_tokens"),
            top_p=get("eval.top_p"),
            temperature=get("eval.temperature"),
chenych's avatar
chenych committed
322
            output_dir=get_save_dir(model_name, finetuning_type, get("eval.output_dir")),
luopl's avatar
luopl committed
323
            trust_remote_code=True,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
324
325
326
327
328
329
330
        )

        if get("eval.predict"):
            args["do_predict"] = True
        else:
            args["do_eval"] = True

chenych's avatar
chenych committed
331
332
333
334
335
336
337
338
339
340
        # checkpoints
        if get("top.checkpoint_path"):
            if finetuning_type in PEFT_METHODS:  # list
                args["adapter_name_or_path"] = ",".join(
                    [get_save_dir(model_name, finetuning_type, adapter) for adapter in get("top.checkpoint_path")]
                )
            else:  # str
                args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, get("top.checkpoint_path"))

        # quantization
chenych's avatar
chenych committed
341
        if get("top.quantization_bit") != "none":
chenych's avatar
chenych committed
342
343
            args["quantization_bit"] = int(get("top.quantization_bit"))
            args["quantization_method"] = get("top.quantization_method")
chenych's avatar
chenych committed
344
            args["double_quantization"] = not is_torch_npu_available()
chenych's avatar
chenych committed
345

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
346
347
348
        return args

    def _preview(self, data: Dict["Component", Any], do_train: bool) -> Generator[Dict["Component", str], None, None]:
chenych's avatar
chenych committed
349
350
351
        r"""
        Previews the training commands.
        """
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
352
353
354
355
356
357
358
359
360
361
        output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if do_train else "eval"))
        error = self._initialize(data, do_train, from_preview=True)
        if error:
            gr.Warning(error)
            yield {output_box: error}
        else:
            args = self._parse_train_args(data) if do_train else self._parse_eval_args(data)
            yield {output_box: gen_cmd(args)}

    def _launch(self, data: Dict["Component", Any], do_train: bool) -> Generator[Dict["Component", Any], None, None]:
chenych's avatar
chenych committed
362
363
364
        r"""
        Starts the training process.
        """
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
365
366
367
368
369
370
371
        output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if do_train else "eval"))
        error = self._initialize(data, do_train, from_preview=False)
        if error:
            gr.Warning(error)
            yield {output_box: error}
        else:
            self.do_train, self.running_data = do_train, data
chenych's avatar
chenych committed
372
373
374
            args = self._parse_train_args(data) if do_train else self._parse_eval_args(data)

            os.makedirs(args["output_dir"], exist_ok=True)
chenych's avatar
chenych committed
375
            save_args(os.path.join(args["output_dir"], LLAMABOARD_CONFIG), self._build_config_dict(data))
chenych's avatar
chenych committed
376
377
378
379
380
381
382

            env = deepcopy(os.environ)
            env["LLAMABOARD_ENABLED"] = "1"
            env["LLAMABOARD_WORKDIR"] = args["output_dir"]
            if args.get("deepspeed", None) is not None:
                env["FORCE_TORCHRUN"] = "1"

luopl's avatar
luopl committed
383
            self.trainer = Popen(["llamafactory-cli", "train", save_cmd(args)], env=env)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
384
385
            yield from self.monitor()

chenych's avatar
chenych committed
386
387
388
389
    def _build_config_dict(self, data: Dict["Component", Any]) -> Dict[str, Any]:
        r"""
        Builds a dictionary containing the current training configuration.
        """
chenych's avatar
chenych committed
390
391
392
393
394
395
396
397
398
        config_dict = {}
        skip_ids = ["top.lang", "top.model_path", "train.output_dir", "train.config_path"]
        for elem, value in data.items():
            elem_id = self.manager.get_id_by_elem(elem)
            if elem_id not in skip_ids:
                config_dict[elem_id] = value

        return config_dict

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
399
400
401
402
403
404
405
406
407
408
409
410
411
    def preview_train(self, data):
        yield from self._preview(data, do_train=True)

    def preview_eval(self, data):
        yield from self._preview(data, do_train=False)

    def run_train(self, data):
        yield from self._launch(data, do_train=True)

    def run_eval(self, data):
        yield from self._launch(data, do_train=False)

    def monitor(self):
chenych's avatar
chenych committed
412
413
414
        r"""
        Monitors the training progress and logs.
        """
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
415
416
417
        self.aborted = False
        self.running = True

chenych's avatar
chenych committed
418
419
        get = lambda elem_id: self.running_data[self.manager.get_elem_by_id(elem_id)]
        lang, model_name, finetuning_type = get("top.lang"), get("top.model_name"), get("top.finetuning_type")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
420
421
422
423
        output_dir = get("{}.output_dir".format("train" if self.do_train else "eval"))
        output_path = get_save_dir(model_name, finetuning_type, output_dir)

        output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if self.do_train else "eval"))
chenych's avatar
chenych committed
424
        progress_bar = self.manager.get_elem_by_id("{}.progress_bar".format("train" if self.do_train else "eval"))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
425
        loss_viewer = self.manager.get_elem_by_id("train.loss_viewer") if self.do_train else None
chenych's avatar
chenych committed
426
        swanlab_link = self.manager.get_elem_by_id("train.swanlab_link") if self.do_train else None
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
427

luopl's avatar
luopl committed
428
        running_log = ""
chenych's avatar
chenych committed
429
        while self.trainer is not None:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
430
431
432
            if self.aborted:
                yield {
                    output_box: ALERTS["info_aborting"][lang],
chenych's avatar
chenych committed
433
                    progress_bar: gr.Slider(visible=False),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
434
435
                }
            else:
chenych's avatar
chenych committed
436
                running_log, running_progress, running_info = get_trainer_info(lang, output_path, self.do_train)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
437
                return_dict = {
chenych's avatar
chenych committed
438
439
                    output_box: running_log,
                    progress_bar: running_progress,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
440
                }
chenych's avatar
chenych committed
441
442
                if "loss_viewer" in running_info:
                    return_dict[loss_viewer] = running_info["loss_viewer"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
443

chenych's avatar
chenych committed
444
445
                if "swanlab_link" in running_info:
                    return_dict[swanlab_link] = running_info["swanlab_link"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
446

chenych's avatar
chenych committed
447
                yield return_dict
chenych's avatar
chenych committed
448
449
450
451
452
            try:
                self.trainer.wait(2)
                self.trainer = None
            except TimeoutExpired:
                continue
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
453
454

        if self.do_train:
luopl's avatar
luopl committed
455
            if os.path.exists(os.path.join(output_path, TRAINING_ARGS_NAME)) or use_ray():
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
456
457
458
459
                finish_info = ALERTS["info_finished"][lang]
            else:
                finish_info = ALERTS["err_failed"][lang]
        else:
luopl's avatar
luopl committed
460
            if os.path.exists(os.path.join(output_path, "all_results.json")) or use_ray():
chenych's avatar
chenych committed
461
                finish_info = load_eval_results(os.path.join(output_path, "all_results.json"))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
462
463
464
465
            else:
                finish_info = ALERTS["err_failed"][lang]

        return_dict = {
luopl's avatar
luopl committed
466
            output_box: self._finalize(lang, finish_info) + "\n\n" + running_log,
chenych's avatar
chenych committed
467
            progress_bar: gr.Slider(visible=False),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
468
469
470
471
        }
        yield return_dict

    def save_args(self, data):
chenych's avatar
chenych committed
472
473
474
        r"""
        Saves the training configuration to config path.
        """
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
475
476
477
478
479
480
481
482
        output_box = self.manager.get_elem_by_id("train.output_box")
        error = self._initialize(data, do_train=True, from_preview=True)
        if error:
            gr.Warning(error)
            return {output_box: error}

        lang = data[self.manager.get_elem_by_id("top.lang")]
        config_path = data[self.manager.get_elem_by_id("train.config_path")]
chenych's avatar
chenych committed
483
484
        os.makedirs(DEFAULT_CONFIG_DIR, exist_ok=True)
        save_path = os.path.join(DEFAULT_CONFIG_DIR, config_path)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
485

chenych's avatar
chenych committed
486
        save_args(save_path, self._build_config_dict(data))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
487
488
489
        return {output_box: ALERTS["info_config_saved"][lang] + save_path}

    def load_args(self, lang: str, config_path: str):
chenych's avatar
chenych committed
490
491
492
        r"""
        Loads the training configuration from config path.
        """
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
493
        output_box = self.manager.get_elem_by_id("train.output_box")
chenych's avatar
chenych committed
494
        config_dict = load_args(os.path.join(DEFAULT_CONFIG_DIR, config_path))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
495
496
497
498
499
500
501
502
503
        if config_dict is None:
            gr.Warning(ALERTS["err_config_not_found"][lang])
            return {output_box: ALERTS["err_config_not_found"][lang]}

        output_dict: Dict["Component", Any] = {output_box: ALERTS["info_config_loaded"][lang]}
        for elem_id, value in config_dict.items():
            output_dict[self.manager.get_elem_by_id(elem_id)] = value

        return output_dict
chenych's avatar
chenych committed
504
505

    def check_output_dir(self, lang: str, model_name: str, finetuning_type: str, output_dir: str):
chenych's avatar
chenych committed
506
507
508
        r"""
        Restore the training status if output_dir exists.
        """
chenych's avatar
chenych committed
509
510
511
512
513
514
515
516
517
518
519
520
        output_box = self.manager.get_elem_by_id("train.output_box")
        output_dict: Dict["Component", Any] = {output_box: LOCALES["output_box"][lang]["value"]}
        if model_name and output_dir and os.path.isdir(get_save_dir(model_name, finetuning_type, output_dir)):
            gr.Warning(ALERTS["warn_output_dir_exists"][lang])
            output_dict[output_box] = ALERTS["warn_output_dir_exists"][lang]

            output_dir = get_save_dir(model_name, finetuning_type, output_dir)
            config_dict = load_args(os.path.join(output_dir, LLAMABOARD_CONFIG))  # load llamaboard config
            for elem_id, value in config_dict.items():
                output_dict[self.manager.get_elem_by_id(elem_id)] = value

        return output_dict