runner.py 19.3 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

luopl's avatar
luopl committed
15
import json
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
16
import os
chenych's avatar
chenych committed
17
18
19
from copy import deepcopy
from subprocess import Popen, TimeoutExpired
from typing import TYPE_CHECKING, Any, Dict, Generator, Optional
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
20
21
22

from transformers.trainer import TRAINING_ARGS_NAME

chenych's avatar
chenych committed
23
24
from ..extras.constants import LLAMABOARD_CONFIG, PEFT_METHODS, TRAINING_STAGES
from ..extras.misc import is_gpu_or_npu_available, torch_gc
luopl's avatar
luopl committed
25
from ..extras.packages import is_gradio_available, is_transformers_version_equal_to_4_46
chenych's avatar
chenych committed
26
27
28
from .common import DEFAULT_CACHE_DIR, DEFAULT_CONFIG_DIR, QUANTIZATION_BITS, get_save_dir, load_config
from .locales import ALERTS, LOCALES
from .utils import abort_process, gen_cmd, get_eval_results, get_trainer_info, load_args, save_args, save_cmd
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


if is_gradio_available():
    import gradio as gr


if TYPE_CHECKING:
    from gradio.components import Component

    from .manager import Manager


class Runner:
    def __init__(self, manager: "Manager", demo_mode: bool = False) -> None:
        self.manager = manager
        self.demo_mode = demo_mode
        """ Resume """
chenych's avatar
chenych committed
46
        self.trainer: Optional["Popen"] = None
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
47
48
49
50
51
52
53
54
        self.do_train = True
        self.running_data: Dict["Component", Any] = None
        """ State """
        self.aborted = False
        self.running = False

    def set_abort(self) -> None:
        self.aborted = True
chenych's avatar
chenych committed
55
56
        if self.trainer is not None:
            abort_process(self.trainer.pid)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

    def _initialize(self, data: Dict["Component", Any], do_train: bool, from_preview: bool) -> str:
        get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
        lang, model_name, model_path = get("top.lang"), get("top.model_name"), get("top.model_path")
        dataset = get("train.dataset") if do_train else get("eval.dataset")

        if self.running:
            return ALERTS["err_conflict"][lang]

        if not model_name:
            return ALERTS["err_no_model"][lang]

        if not model_path:
            return ALERTS["err_no_path"][lang]

chenych's avatar
chenych committed
72
        if not dataset:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
73
74
75
76
77
78
            return ALERTS["err_no_dataset"][lang]

        if not from_preview and self.demo_mode:
            return ALERTS["err_demo"][lang]

        if do_train:
chenych's avatar
chenych committed
79
80
81
            if not get("train.output_dir"):
                return ALERTS["err_no_output_dir"][lang]

luopl's avatar
luopl committed
82
83
84
85
86
            try:
                json.loads(get("train.extra_args"))
            except json.JSONDecodeError:
                return ALERTS["err_json_schema"][lang]

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
87
            stage = TRAINING_STAGES[get("train.training_stage")]
chenych's avatar
chenych committed
88
            if stage == "ppo" and not get("train.reward_model"):
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
89
                return ALERTS["err_no_reward_model"][lang]
chenych's avatar
chenych committed
90
91
92
        else:
            if not get("eval.output_dir"):
                return ALERTS["err_no_output_dir"][lang]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
93

chenych's avatar
chenych committed
94
        if not from_preview and not is_gpu_or_npu_available():
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
95
96
97
98
99
100
            gr.Warning(ALERTS["warn_no_cuda"][lang])

        return ""

    def _finalize(self, lang: str, finish_info: str) -> str:
        finish_info = ALERTS["info_aborted"][lang] if self.aborted else finish_info
luopl's avatar
luopl committed
101
        gr.Info(finish_info)
chenych's avatar
chenych committed
102
        self.trainer = None
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
103
104
105
106
107
108
109
110
        self.aborted = False
        self.running = False
        self.running_data = None
        torch_gc()
        return finish_info

    def _parse_train_args(self, data: Dict["Component", Any]) -> Dict[str, Any]:
        get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
chenych's avatar
chenych committed
111
        model_name, finetuning_type = get("top.model_name"), get("top.finetuning_type")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
112
113
114
115
116
117
118
        user_config = load_config()

        args = dict(
            stage=TRAINING_STAGES[get("train.training_stage")],
            do_train=True,
            model_name_or_path=get("top.model_path"),
            cache_dir=user_config.get("cache_dir", None),
chenych's avatar
chenych committed
119
120
            preprocessing_num_workers=16,
            finetuning_type=finetuning_type,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
121
122
            template=get("top.template"),
            rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
chenych's avatar
chenych committed
123
            flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
124
            use_unsloth=(get("top.booster") == "unsloth"),
luopl's avatar
luopl committed
125
            enable_liger_kernel=(get("top.booster") == "liger_kernel"),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
            dataset_dir=get("train.dataset_dir"),
            dataset=",".join(get("train.dataset")),
            cutoff_len=get("train.cutoff_len"),
            learning_rate=float(get("train.learning_rate")),
            num_train_epochs=float(get("train.num_train_epochs")),
            max_samples=int(get("train.max_samples")),
            per_device_train_batch_size=get("train.batch_size"),
            gradient_accumulation_steps=get("train.gradient_accumulation_steps"),
            lr_scheduler_type=get("train.lr_scheduler_type"),
            max_grad_norm=float(get("train.max_grad_norm")),
            logging_steps=get("train.logging_steps"),
            save_steps=get("train.save_steps"),
            warmup_steps=get("train.warmup_steps"),
            neftune_noise_alpha=get("train.neftune_alpha") or None,
chenych's avatar
chenych committed
140
141
142
143
            packing=get("train.packing") or get("train.neat_packing"),
            neat_packing=get("train.neat_packing"),
            train_on_prompt=get("train.train_on_prompt"),
            mask_history=get("train.mask_history"),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
144
145
146
147
148
            resize_vocab=get("train.resize_vocab"),
            use_llama_pro=get("train.use_llama_pro"),
            shift_attn=get("train.shift_attn"),
            report_to="all" if get("train.report_to") else "none",
            use_galore=get("train.use_galore"),
chenych's avatar
chenych committed
149
150
            use_badam=get("train.use_badam"),
            output_dir=get_save_dir(model_name, finetuning_type, get("train.output_dir")),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
151
152
153
            fp16=(get("train.compute_type") == "fp16"),
            bf16=(get("train.compute_type") == "bf16"),
            pure_bf16=(get("train.compute_type") == "pure_bf16"),
chenych's avatar
chenych committed
154
155
            plot_loss=True,
            ddp_timeout=180000000,
luopl's avatar
luopl committed
156
            include_num_input_tokens_seen=False if is_transformers_version_equal_to_4_46() else True,  # FIXME
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
157
        )
luopl's avatar
luopl committed
158
        args.update(json.loads(get("train.extra_args")))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
159

chenych's avatar
chenych committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        # checkpoints
        if get("top.checkpoint_path"):
            if finetuning_type in PEFT_METHODS:  # list
                args["adapter_name_or_path"] = ",".join(
                    [get_save_dir(model_name, finetuning_type, adapter) for adapter in get("top.checkpoint_path")]
                )
            else:  # str
                args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, get("top.checkpoint_path"))

        # quantization
        if get("top.quantization_bit") in QUANTIZATION_BITS:
            args["quantization_bit"] = int(get("top.quantization_bit"))
            args["quantization_method"] = get("top.quantization_method")

        # freeze config
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
175
        if args["finetuning_type"] == "freeze":
chenych's avatar
chenych committed
176
177
178
179
180
181
            args["freeze_trainable_layers"] = get("train.freeze_trainable_layers")
            args["freeze_trainable_modules"] = get("train.freeze_trainable_modules")
            args["freeze_extra_modules"] = get("train.freeze_extra_modules") or None

        # lora config
        if args["finetuning_type"] == "lora":
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
182
183
184
185
186
187
188
            args["lora_rank"] = get("train.lora_rank")
            args["lora_alpha"] = get("train.lora_alpha")
            args["lora_dropout"] = get("train.lora_dropout")
            args["loraplus_lr_ratio"] = get("train.loraplus_lr_ratio") or None
            args["create_new_adapter"] = get("train.create_new_adapter")
            args["use_rslora"] = get("train.use_rslora")
            args["use_dora"] = get("train.use_dora")
chenych's avatar
chenych committed
189
190
191
            args["pissa_init"] = get("train.use_pissa")
            args["pissa_convert"] = get("train.use_pissa")
            args["lora_target"] = get("train.lora_target") or "all"
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
192
193
194
            args["additional_target"] = get("train.additional_target") or None

            if args["use_llama_pro"]:
chenych's avatar
chenych committed
195
                args["freeze_trainable_layers"] = get("train.freeze_trainable_layers")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
196

chenych's avatar
chenych committed
197
        # rlhf config
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
198
        if args["stage"] == "ppo":
chenych's avatar
chenych committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
            if finetuning_type in PEFT_METHODS:
                args["reward_model"] = ",".join(
                    [get_save_dir(model_name, finetuning_type, adapter) for adapter in get("train.reward_model")]
                )
            else:
                args["reward_model"] = get_save_dir(model_name, finetuning_type, get("train.reward_model"))

            args["reward_model_type"] = "lora" if finetuning_type == "lora" else "full"
            args["ppo_score_norm"] = get("train.ppo_score_norm")
            args["ppo_whiten_rewards"] = get("train.ppo_whiten_rewards")
            args["top_k"] = 0
            args["top_p"] = 0.9
        elif args["stage"] in ["dpo", "kto"]:
            args["pref_beta"] = get("train.pref_beta")
            args["pref_ftx"] = get("train.pref_ftx")
            args["pref_loss"] = get("train.pref_loss")

        # galore config
        if args["use_galore"]:
            args["galore_rank"] = get("train.galore_rank")
            args["galore_update_interval"] = get("train.galore_update_interval")
            args["galore_scale"] = get("train.galore_scale")
            args["galore_target"] = get("train.galore_target")

        # badam config
        if args["use_badam"]:
            args["badam_mode"] = get("train.badam_mode")
            args["badam_switch_mode"] = get("train.badam_switch_mode")
            args["badam_switch_interval"] = get("train.badam_switch_interval")
            args["badam_update_ratio"] = get("train.badam_update_ratio")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
229

chenych's avatar
chenych committed
230
        # eval config
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
231
232
        if get("train.val_size") > 1e-6 and args["stage"] != "ppo":
            args["val_size"] = get("train.val_size")
chenych's avatar
chenych committed
233
            args["eval_strategy"] = "steps"
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
234
235
236
            args["eval_steps"] = args["save_steps"]
            args["per_device_eval_batch_size"] = args["per_device_train_batch_size"]

chenych's avatar
chenych committed
237
238
239
240
        # ds config
        if get("train.ds_stage") != "none":
            ds_stage = get("train.ds_stage")
            ds_offload = "offload_" if get("train.ds_offload") else ""
luopl's avatar
luopl committed
241
            args["deepspeed"] = os.path.join(DEFAULT_CACHE_DIR, f"ds_z{ds_stage}_{ds_offload}config.json")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
242
243
244
245
246

        return args

    def _parse_eval_args(self, data: Dict["Component", Any]) -> Dict[str, Any]:
        get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
chenych's avatar
chenych committed
247
        model_name, finetuning_type = get("top.model_name"), get("top.finetuning_type")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
248
249
250
251
252
253
        user_config = load_config()

        args = dict(
            stage="sft",
            model_name_or_path=get("top.model_path"),
            cache_dir=user_config.get("cache_dir", None),
chenych's avatar
chenych committed
254
255
256
            preprocessing_num_workers=16,
            finetuning_type=finetuning_type,
            quantization_method=get("top.quantization_method"),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
257
258
            template=get("top.template"),
            rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
chenych's avatar
chenych committed
259
            flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
260
261
            use_unsloth=(get("top.booster") == "unsloth"),
            dataset_dir=get("eval.dataset_dir"),
chenych's avatar
chenych committed
262
            eval_dataset=",".join(get("eval.dataset")),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
263
264
265
266
267
268
269
            cutoff_len=get("eval.cutoff_len"),
            max_samples=int(get("eval.max_samples")),
            per_device_eval_batch_size=get("eval.batch_size"),
            predict_with_generate=True,
            max_new_tokens=get("eval.max_new_tokens"),
            top_p=get("eval.top_p"),
            temperature=get("eval.temperature"),
chenych's avatar
chenych committed
270
            output_dir=get_save_dir(model_name, finetuning_type, get("eval.output_dir")),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
271
272
273
274
275
276
277
        )

        if get("eval.predict"):
            args["do_predict"] = True
        else:
            args["do_eval"] = True

chenych's avatar
chenych committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        # checkpoints
        if get("top.checkpoint_path"):
            if finetuning_type in PEFT_METHODS:  # list
                args["adapter_name_or_path"] = ",".join(
                    [get_save_dir(model_name, finetuning_type, adapter) for adapter in get("top.checkpoint_path")]
                )
            else:  # str
                args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, get("top.checkpoint_path"))

        # quantization
        if get("top.quantization_bit") in QUANTIZATION_BITS:
            args["quantization_bit"] = int(get("top.quantization_bit"))
            args["quantization_method"] = get("top.quantization_method")

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        return args

    def _preview(self, data: Dict["Component", Any], do_train: bool) -> Generator[Dict["Component", str], None, None]:
        output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if do_train else "eval"))
        error = self._initialize(data, do_train, from_preview=True)
        if error:
            gr.Warning(error)
            yield {output_box: error}
        else:
            args = self._parse_train_args(data) if do_train else self._parse_eval_args(data)
            yield {output_box: gen_cmd(args)}

    def _launch(self, data: Dict["Component", Any], do_train: bool) -> Generator[Dict["Component", Any], None, None]:
        output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if do_train else "eval"))
        error = self._initialize(data, do_train, from_preview=False)
        if error:
            gr.Warning(error)
            yield {output_box: error}
        else:
            self.do_train, self.running_data = do_train, data
chenych's avatar
chenych committed
312
313
314
315
316
317
318
319
320
321
322
            args = self._parse_train_args(data) if do_train else self._parse_eval_args(data)

            os.makedirs(args["output_dir"], exist_ok=True)
            save_args(os.path.join(args["output_dir"], LLAMABOARD_CONFIG), self._form_config_dict(data))

            env = deepcopy(os.environ)
            env["LLAMABOARD_ENABLED"] = "1"
            env["LLAMABOARD_WORKDIR"] = args["output_dir"]
            if args.get("deepspeed", None) is not None:
                env["FORCE_TORCHRUN"] = "1"

luopl's avatar
luopl committed
323
            self.trainer = Popen(["llamafactory-cli", "train", save_cmd(args)], env=env)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
324
325
            yield from self.monitor()

chenych's avatar
chenych committed
326
327
328
329
330
331
332
333
334
335
    def _form_config_dict(self, data: Dict["Component", Any]) -> Dict[str, Any]:
        config_dict = {}
        skip_ids = ["top.lang", "top.model_path", "train.output_dir", "train.config_path"]
        for elem, value in data.items():
            elem_id = self.manager.get_id_by_elem(elem)
            if elem_id not in skip_ids:
                config_dict[elem_id] = value

        return config_dict

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    def preview_train(self, data):
        yield from self._preview(data, do_train=True)

    def preview_eval(self, data):
        yield from self._preview(data, do_train=False)

    def run_train(self, data):
        yield from self._launch(data, do_train=True)

    def run_eval(self, data):
        yield from self._launch(data, do_train=False)

    def monitor(self):
        self.aborted = False
        self.running = True

chenych's avatar
chenych committed
352
353
        get = lambda elem_id: self.running_data[self.manager.get_elem_by_id(elem_id)]
        lang, model_name, finetuning_type = get("top.lang"), get("top.model_name"), get("top.finetuning_type")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
354
355
356
357
        output_dir = get("{}.output_dir".format("train" if self.do_train else "eval"))
        output_path = get_save_dir(model_name, finetuning_type, output_dir)

        output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if self.do_train else "eval"))
chenych's avatar
chenych committed
358
        progress_bar = self.manager.get_elem_by_id("{}.progress_bar".format("train" if self.do_train else "eval"))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
359
360
        loss_viewer = self.manager.get_elem_by_id("train.loss_viewer") if self.do_train else None

luopl's avatar
luopl committed
361
        running_log = ""
chenych's avatar
chenych committed
362
        while self.trainer is not None:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
363
364
365
            if self.aborted:
                yield {
                    output_box: ALERTS["info_aborting"][lang],
chenych's avatar
chenych committed
366
                    progress_bar: gr.Slider(visible=False),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
367
368
                }
            else:
chenych's avatar
chenych committed
369
                running_log, running_progress, running_loss = get_trainer_info(output_path, self.do_train)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
370
                return_dict = {
chenych's avatar
chenych committed
371
372
                    output_box: running_log,
                    progress_bar: running_progress,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
373
                }
chenych's avatar
chenych committed
374
375
                if running_loss is not None:
                    return_dict[loss_viewer] = running_loss
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
376
377
378

                yield return_dict

chenych's avatar
chenych committed
379
380
381
382
383
            try:
                self.trainer.wait(2)
                self.trainer = None
            except TimeoutExpired:
                continue
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
384
385
386
387
388
389
390
391
392
393
394
395
396

        if self.do_train:
            if os.path.exists(os.path.join(output_path, TRAINING_ARGS_NAME)):
                finish_info = ALERTS["info_finished"][lang]
            else:
                finish_info = ALERTS["err_failed"][lang]
        else:
            if os.path.exists(os.path.join(output_path, "all_results.json")):
                finish_info = get_eval_results(os.path.join(output_path, "all_results.json"))
            else:
                finish_info = ALERTS["err_failed"][lang]

        return_dict = {
luopl's avatar
luopl committed
397
            output_box: self._finalize(lang, finish_info) + "\n\n" + running_log,
chenych's avatar
chenych committed
398
            progress_bar: gr.Slider(visible=False),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
399
400
401
402
403
404
405
406
407
408
409
410
        }
        yield return_dict

    def save_args(self, data):
        output_box = self.manager.get_elem_by_id("train.output_box")
        error = self._initialize(data, do_train=True, from_preview=True)
        if error:
            gr.Warning(error)
            return {output_box: error}

        lang = data[self.manager.get_elem_by_id("top.lang")]
        config_path = data[self.manager.get_elem_by_id("train.config_path")]
chenych's avatar
chenych committed
411
412
        os.makedirs(DEFAULT_CONFIG_DIR, exist_ok=True)
        save_path = os.path.join(DEFAULT_CONFIG_DIR, config_path)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
413

chenych's avatar
chenych committed
414
        save_args(save_path, self._form_config_dict(data))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
415
416
417
418
        return {output_box: ALERTS["info_config_saved"][lang] + save_path}

    def load_args(self, lang: str, config_path: str):
        output_box = self.manager.get_elem_by_id("train.output_box")
chenych's avatar
chenych committed
419
        config_dict = load_args(os.path.join(DEFAULT_CONFIG_DIR, config_path))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
420
421
422
423
424
425
426
427
428
        if config_dict is None:
            gr.Warning(ALERTS["err_config_not_found"][lang])
            return {output_box: ALERTS["err_config_not_found"][lang]}

        output_dict: Dict["Component", Any] = {output_box: ALERTS["info_config_loaded"][lang]}
        for elem_id, value in config_dict.items():
            output_dict[self.manager.get_elem_by_id(elem_id)] = value

        return output_dict
chenych's avatar
chenych committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442

    def check_output_dir(self, lang: str, model_name: str, finetuning_type: str, output_dir: str):
        output_box = self.manager.get_elem_by_id("train.output_box")
        output_dict: Dict["Component", Any] = {output_box: LOCALES["output_box"][lang]["value"]}
        if model_name and output_dir and os.path.isdir(get_save_dir(model_name, finetuning_type, output_dir)):
            gr.Warning(ALERTS["warn_output_dir_exists"][lang])
            output_dict[output_box] = ALERTS["warn_output_dir_exists"][lang]

            output_dir = get_save_dir(model_name, finetuning_type, output_dir)
            config_dict = load_args(os.path.join(output_dir, LLAMABOARD_CONFIG))  # load llamaboard config
            for elem_id, value in config_dict.items():
                output_dict[self.manager.get_elem_by_id(elem_id)] = value

        return output_dict