data_utils.py 6.62 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

chenych's avatar
chenych committed
15
import json
chenych's avatar
chenych committed
16
from enum import Enum, unique
chenych's avatar
chenych committed
17
from typing import TYPE_CHECKING, Optional, TypedDict, Union
chenych's avatar
chenych committed
18

chenych's avatar
chenych committed
19
import fsspec
chenych's avatar
chenych committed
20
21
from datasets import DatasetDict, concatenate_datasets, interleave_datasets

luopl's avatar
luopl committed
22
from ..extras import logging
chenych's avatar
chenych committed
23
24
25
26
27
28
29
30


if TYPE_CHECKING:
    from datasets import Dataset, IterableDataset

    from ..hparams import DataArguments


luopl's avatar
luopl committed
31
logger = logging.get_logger(__name__)
chenych's avatar
chenych committed
32
33


chenych's avatar
chenych committed
34
SLOTS = list[Union[str, set[str], dict[str, str]]]
chenych's avatar
chenych committed
35
36
37
38
39
40
41
42
43
44
45
46
47


@unique
class Role(str, Enum):
    USER = "user"
    ASSISTANT = "assistant"
    SYSTEM = "system"
    FUNCTION = "function"
    OBSERVATION = "observation"


class DatasetModule(TypedDict):
    train_dataset: Optional[Union["Dataset", "IterableDataset"]]
chenych's avatar
chenych committed
48
    eval_dataset: Optional[Union["Dataset", "IterableDataset", dict[str, "Dataset"]]]
chenych's avatar
chenych committed
49
50
51


def merge_dataset(
chenych's avatar
chenych committed
52
    all_datasets: list[Union["Dataset", "IterableDataset"]], data_args: "DataArguments", seed: int
chenych's avatar
chenych committed
53
) -> Union["Dataset", "IterableDataset"]:
chenych's avatar
chenych committed
54
    r"""Merge multiple datasets to a unified dataset."""
chenych's avatar
chenych committed
55
56
    if len(all_datasets) == 1:
        return all_datasets[0]
chenych's avatar
chenych committed
57

chenych's avatar
chenych committed
58
59
    elif data_args.mix_strategy == "concat":
        if data_args.streaming:
luopl's avatar
luopl committed
60
            logger.warning_rank0_once("The samples between different datasets will not be mixed in streaming mode.")
chenych's avatar
chenych committed
61
62

        return concatenate_datasets(all_datasets)
chenych's avatar
chenych committed
63

chenych's avatar
chenych committed
64
65
    elif data_args.mix_strategy.startswith("interleave"):
        if not data_args.streaming:
luopl's avatar
luopl committed
66
            logger.warning_rank0_once("We recommend using `mix_strategy=concat` in non-streaming mode.")
chenych's avatar
chenych committed
67
68
69
70
71
72
73

        return interleave_datasets(
            datasets=all_datasets,
            probabilities=data_args.interleave_probs,
            seed=seed,
            stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
        )
chenych's avatar
chenych committed
74

chenych's avatar
chenych committed
75
    else:
luopl's avatar
luopl committed
76
        raise ValueError(f"Unknown mixing strategy: {data_args.mix_strategy}.")
chenych's avatar
chenych committed
77
78
79


def split_dataset(
chenych's avatar
chenych committed
80
    dataset: Optional[Union["Dataset", "IterableDataset"]],
chenych's avatar
chenych committed
81
    eval_dataset: Optional[Union["Dataset", "IterableDataset", dict[str, "Dataset"]]],
chenych's avatar
chenych committed
82
83
    data_args: "DataArguments",
    seed: int,
chenych's avatar
chenych committed
84
) -> "DatasetDict":
chenych's avatar
chenych committed
85
    r"""Split the dataset and returns a dataset dict containing train set and validation set.
luopl's avatar
luopl committed
86

chenych's avatar
chenych committed
87
    Support both map dataset and iterable dataset.
chenych's avatar
chenych committed
88
    """
chenych's avatar
chenych committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    if eval_dataset is not None and data_args.val_size > 1e-6:
        raise ValueError("Cannot specify `val_size` if `eval_dataset` is not None.")

    dataset_dict = {}
    if dataset is not None:
        if data_args.streaming:
            dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)

        if data_args.val_size > 1e-6:
            if data_args.streaming:
                dataset_dict["validation"] = dataset.take(int(data_args.val_size))
                dataset_dict["train"] = dataset.skip(int(data_args.val_size))
            else:
                val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
                dataset_dict = dataset.train_test_split(test_size=val_size, seed=seed)
                dataset = dataset.train_test_split(test_size=val_size, seed=seed)
                dataset_dict = {"train": dataset["train"], "validation": dataset["test"]}
        else:
            dataset_dict["train"] = dataset

    if eval_dataset is not None:
        if isinstance(eval_dataset, dict):
            dataset_dict.update({f"validation_{name}": data for name, data in eval_dataset.items()})
        else:
            if data_args.streaming:
                eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)

            dataset_dict["validation"] = eval_dataset

    return DatasetDict(dataset_dict)


def get_dataset_module(dataset: Union["Dataset", "DatasetDict"]) -> "DatasetModule":
chenych's avatar
chenych committed
122
123
    r"""Convert dataset or dataset dict to dataset module."""
    dataset_module: DatasetModule = {}
chenych's avatar
chenych committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    if isinstance(dataset, DatasetDict):  # dataset dict
        if "train" in dataset:
            dataset_module["train_dataset"] = dataset["train"]

        if "validation" in dataset:
            dataset_module["eval_dataset"] = dataset["validation"]
        else:
            eval_dataset = {}
            for key in dataset.keys():
                if key.startswith("validation_"):
                    eval_dataset[key[len("validation_") :]] = dataset[key]

            if len(eval_dataset):
                dataset_module["eval_dataset"] = eval_dataset

    else:  # single dataset
        dataset_module["train_dataset"] = dataset

    return dataset_module
chenych's avatar
chenych committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189


def setup_fs(path, anon=False):
    """Set up a filesystem object based on the path protocol."""
    storage_options = {"anon": anon} if anon else {}

    if path.startswith("s3://"):
        fs = fsspec.filesystem("s3", **storage_options)
    elif path.startswith(("gs://", "gcs://")):
        fs = fsspec.filesystem("gcs", **storage_options)
    else:
        raise ValueError(f"Unsupported protocol in path: {path}. Use 's3://' or 'gs://'")
    return fs


def read_cloud_json(cloud_path):
    """Read a JSON/JSONL file from cloud storage (S3 or GCS).

    Args:
        cloud_path : str
            Cloud path in the format:
            - 's3://bucket-name/file.json' for AWS S3
            - 'gs://bucket-name/file.jsonl' or 'gcs://bucket-name/file.jsonl' for Google Cloud Storage
        lines : bool, default=True
            If True, read the file as JSON Lines format (one JSON object per line)
    """
    try:
        # Try with anonymous access first
        fs = setup_fs(cloud_path, anon=True)
        return _read_json_with_fs(fs, cloud_path, lines=cloud_path.endswith(".jsonl"))
    except Exception:
        # Try again with credentials
        fs = setup_fs(cloud_path)
        return _read_json_with_fs(fs, cloud_path, lines=cloud_path.endswith(".jsonl"))


def _read_json_with_fs(fs, path, lines=True):
    """Helper function to read JSON/JSONL files using fsspec."""
    with fs.open(path, "r") as f:
        if lines:
            # Read JSONL (JSON Lines) format - one JSON object per line
            data = [json.loads(line) for line in f if line.strip()]
        else:
            # Read regular JSON format
            data = json.load(f)

    return data