data_utils.py 4.95 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from enum import Enum, unique
chenych's avatar
chenych committed
16
from typing import TYPE_CHECKING, Optional, TypedDict, Union
chenych's avatar
chenych committed
17
18
19

from datasets import DatasetDict, concatenate_datasets, interleave_datasets

luopl's avatar
luopl committed
20
from ..extras import logging
chenych's avatar
chenych committed
21
22
23
24
25
26
27
28


if TYPE_CHECKING:
    from datasets import Dataset, IterableDataset

    from ..hparams import DataArguments


luopl's avatar
luopl committed
29
logger = logging.get_logger(__name__)
chenych's avatar
chenych committed
30
31


chenych's avatar
chenych committed
32
SLOTS = list[Union[str, set[str], dict[str, str]]]
chenych's avatar
chenych committed
33
34
35
36
37
38
39
40
41
42
43
44
45


@unique
class Role(str, Enum):
    USER = "user"
    ASSISTANT = "assistant"
    SYSTEM = "system"
    FUNCTION = "function"
    OBSERVATION = "observation"


class DatasetModule(TypedDict):
    train_dataset: Optional[Union["Dataset", "IterableDataset"]]
chenych's avatar
chenych committed
46
    eval_dataset: Optional[Union["Dataset", "IterableDataset", dict[str, "Dataset"]]]
chenych's avatar
chenych committed
47
48
49


def merge_dataset(
chenych's avatar
chenych committed
50
    all_datasets: list[Union["Dataset", "IterableDataset"]], data_args: "DataArguments", seed: int
chenych's avatar
chenych committed
51
) -> Union["Dataset", "IterableDataset"]:
chenych's avatar
chenych committed
52
    r"""Merge multiple datasets to a unified dataset."""
chenych's avatar
chenych committed
53
54
    if len(all_datasets) == 1:
        return all_datasets[0]
chenych's avatar
chenych committed
55

chenych's avatar
chenych committed
56
57
    elif data_args.mix_strategy == "concat":
        if data_args.streaming:
luopl's avatar
luopl committed
58
            logger.warning_rank0_once("The samples between different datasets will not be mixed in streaming mode.")
chenych's avatar
chenych committed
59
60

        return concatenate_datasets(all_datasets)
chenych's avatar
chenych committed
61

chenych's avatar
chenych committed
62
63
    elif data_args.mix_strategy.startswith("interleave"):
        if not data_args.streaming:
luopl's avatar
luopl committed
64
            logger.warning_rank0_once("We recommend using `mix_strategy=concat` in non-streaming mode.")
chenych's avatar
chenych committed
65
66
67
68
69
70
71

        return interleave_datasets(
            datasets=all_datasets,
            probabilities=data_args.interleave_probs,
            seed=seed,
            stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
        )
chenych's avatar
chenych committed
72

chenych's avatar
chenych committed
73
    else:
luopl's avatar
luopl committed
74
        raise ValueError(f"Unknown mixing strategy: {data_args.mix_strategy}.")
chenych's avatar
chenych committed
75
76
77


def split_dataset(
chenych's avatar
chenych committed
78
    dataset: Optional[Union["Dataset", "IterableDataset"]],
chenych's avatar
chenych committed
79
    eval_dataset: Optional[Union["Dataset", "IterableDataset", dict[str, "Dataset"]]],
chenych's avatar
chenych committed
80
81
    data_args: "DataArguments",
    seed: int,
chenych's avatar
chenych committed
82
) -> "DatasetDict":
chenych's avatar
chenych committed
83
    r"""Split the dataset and returns a dataset dict containing train set and validation set.
luopl's avatar
luopl committed
84

chenych's avatar
chenych committed
85
    Support both map dataset and iterable dataset.
chenych's avatar
chenych committed
86
    """
chenych's avatar
chenych committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    if eval_dataset is not None and data_args.val_size > 1e-6:
        raise ValueError("Cannot specify `val_size` if `eval_dataset` is not None.")

    dataset_dict = {}
    if dataset is not None:
        if data_args.streaming:
            dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)

        if data_args.val_size > 1e-6:
            if data_args.streaming:
                dataset_dict["validation"] = dataset.take(int(data_args.val_size))
                dataset_dict["train"] = dataset.skip(int(data_args.val_size))
            else:
                val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
                dataset_dict = dataset.train_test_split(test_size=val_size, seed=seed)
                dataset = dataset.train_test_split(test_size=val_size, seed=seed)
                dataset_dict = {"train": dataset["train"], "validation": dataset["test"]}
        else:
            dataset_dict["train"] = dataset

    if eval_dataset is not None:
        if isinstance(eval_dataset, dict):
            dataset_dict.update({f"validation_{name}": data for name, data in eval_dataset.items()})
        else:
            if data_args.streaming:
                eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)

            dataset_dict["validation"] = eval_dataset

    return DatasetDict(dataset_dict)


def get_dataset_module(dataset: Union["Dataset", "DatasetDict"]) -> "DatasetModule":
chenych's avatar
chenych committed
120
121
    r"""Convert dataset or dataset dict to dataset module."""
    dataset_module: DatasetModule = {}
chenych's avatar
chenych committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    if isinstance(dataset, DatasetDict):  # dataset dict
        if "train" in dataset:
            dataset_module["train_dataset"] = dataset["train"]

        if "validation" in dataset:
            dataset_module["eval_dataset"] = dataset["validation"]
        else:
            eval_dataset = {}
            for key in dataset.keys():
                if key.startswith("validation_"):
                    eval_dataset[key[len("validation_") :]] = dataset[key]

            if len(eval_dataset):
                dataset_module["eval_dataset"] = eval_dataset

    else:  # single dataset
        dataset_module["train_dataset"] = dataset

    return dataset_module