collator.py 13.3 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 OpenAccess AI Collective and the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# This code is inspired by the OpenAccess AI Collective's axolotl library.
# https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/src/axolotl/monkeypatch/utils.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
chenych's avatar
chenych committed
19
from typing import TYPE_CHECKING, Any, Literal, Optional
chenych's avatar
chenych committed
20

chenych's avatar
chenych committed
21
import numpy as np
chenych's avatar
chenych committed
22
import torch
luopl's avatar
luopl committed
23
import torch.nn.functional as F
chenych's avatar
chenych committed
24
25
from transformers import DataCollatorForSeq2Seq

chenych's avatar
chenych committed
26
from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER
luopl's avatar
luopl committed
27
28
29
30
31
32
from ..extras.packages import is_pillow_available


if is_pillow_available():
    from PIL import Image

chenych's avatar
chenych committed
33

luopl's avatar
luopl committed
34
35
36
37
38
39
if TYPE_CHECKING:
    from transformers import ProcessorMixin

    from .template import Template


chenych's avatar
chenych committed
40
def prepare_4d_attention_mask(attention_mask_with_indices: "torch.Tensor", dtype: "torch.dtype") -> "torch.Tensor":
chenych's avatar
chenych committed
41
42
43
44
    r"""Expand 2d attention mask to 4d attention mask.

    Expand the attention mask with indices from (batch_size, seq_len) to (batch_size, 1, seq_len, seq_len),
    handle packed sequences and transforms the mask to lower triangular form to prevent future peeking.
chenych's avatar
chenych committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

    e.g.
    ```python
    # input
    [[1, 1, 2, 2, 2, 0]]
    # output
    [
        [
            [
                [o, x, x, x, x, x],
                [o, o, x, x, x, x],
                [x, x, o, x, x, x],
                [x, x, o, o, x, x],
                [x, x, o, o, o, x],
                [x, x, x, x, x, x],
            ]
        ]
    ]
    ```
    where `o` equals to `0.0`, `x` equals to `min_dtype`.
    """
chenych's avatar
chenych committed
66
    _, seq_len = attention_mask_with_indices.size()
chenych's avatar
chenych committed
67
    min_dtype = torch.finfo(dtype).min
chenych's avatar
chenych committed
68
    zero_tensor = torch.tensor(0, dtype=dtype)
chenych's avatar
chenych committed
69
70

    # Create a non-padding mask.
chenych's avatar
chenych committed
71
    non_padding_mask = (attention_mask_with_indices != 0).unsqueeze(1).unsqueeze(2)
chenych's avatar
chenych committed
72
73
74
75
    # Create indices for comparison.
    indices = attention_mask_with_indices.unsqueeze(1).unsqueeze(2)  # [bsz, 1, 1, seq_len]
    indices_t = attention_mask_with_indices.unsqueeze(1).unsqueeze(3)  # [bsz, 1, seq_len, 1]
    # Create a lower triangular mask.
chenych's avatar
chenych committed
76
77
    tril_mask = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool))
    attention_mask_4d = (indices == indices_t) & non_padding_mask & tril_mask
chenych's avatar
chenych committed
78
    # Invert the attention mask.
chenych's avatar
chenych committed
79
    attention_mask_4d = torch.where(attention_mask_4d, zero_tensor, min_dtype)
chenych's avatar
chenych committed
80
81
82
83
    return attention_mask_4d


@dataclass
luopl's avatar
luopl committed
84
class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
chenych's avatar
chenych committed
85
    r"""Data collator that supports VLMs.
luopl's avatar
luopl committed
86

chenych's avatar
chenych committed
87
    Features should contain input_ids, attention_mask, labels, and optionally contain images, videos and audios.
luopl's avatar
luopl committed
88
89
90
91
92
    """

    template: Optional["Template"] = None
    processor: Optional["ProcessorMixin"] = None

luopl's avatar
luopl committed
93
94
95
96
    def __post_init__(self):
        if self.template is None:
            raise ValueError("Template is required for MultiModalDataCollator.")

chenych's avatar
chenych committed
97
    def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
chenych's avatar
chenych committed
98
99
        batch_images, batch_videos, batch_audios = [], [], []
        batch_imglens, batch_vidlens, batch_audlens, batch_input_ids = [], [], [], []
luopl's avatar
luopl committed
100
101
102
        for feature in features:
            images = feature.pop("images", None) or []
            videos = feature.pop("videos", None) or []
chenych's avatar
chenych committed
103
            audios = feature.pop("audios", None) or []
luopl's avatar
luopl committed
104
105
            batch_images.extend(images)
            batch_videos.extend(videos)
chenych's avatar
chenych committed
106
            batch_audios.extend(audios)
luopl's avatar
luopl committed
107
108
            batch_imglens.append(len(images))
            batch_vidlens.append(len(videos))
chenych's avatar
chenych committed
109
            batch_audlens.append(len(audios))
luopl's avatar
luopl committed
110
            batch_input_ids.append(feature["input_ids"])
luopl's avatar
luopl committed
111

chenych's avatar
chenych committed
112
        fake_input_ids = []
luopl's avatar
luopl committed
113
        if (
chenych's avatar
chenych committed
114
            self.template.mm_plugin.image_token is not None and sum(batch_imglens) == 0 and sum(batch_vidlens) == 0
luopl's avatar
luopl committed
115
116
117
        ):  # avoid process hanging in zero3/fsdp case
            fake_messages = [{"role": "user", "content": IMAGE_PLACEHOLDER}]
            fake_images = [Image.new("RGB", (64, 64), (255, 255, 255))]
chenych's avatar
chenych committed
118
119
            fake_messages = self.template.mm_plugin.process_messages(
                fake_messages, fake_images, [], [], self.processor
luopl's avatar
luopl committed
120
            )
chenych's avatar
chenych committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
            _fake_input_ids = self.tokenizer.encode(fake_messages[0]["content"], add_special_tokens=False)
            _fake_input_ids, _ = self.template.mm_plugin.process_token_ids(
                _fake_input_ids, None, fake_images, [], [], self.tokenizer, self.processor
            )
            fake_input_ids.extend(_fake_input_ids)
            batch_images = fake_images
            batch_imglens[0] = 1

        if (
            self.template.mm_plugin.audio_token is not None and sum(batch_audlens) == 0
        ):  # avoid process hanging in zero3/fsdp case
            fake_messages = [{"role": "user", "content": AUDIO_PLACEHOLDER}]
            fake_audios = [np.zeros(1600)]
            fake_messages = self.template.mm_plugin.process_messages(
                fake_messages, [], [], fake_audios, self.processor
            )
            _fake_input_ids = self.tokenizer.encode(fake_messages[0]["content"], add_special_tokens=False)
            _fake_input_ids, _ = self.template.mm_plugin.process_token_ids(
                _fake_input_ids, None, [], [], fake_audios, self.tokenizer, self.processor
            )
            fake_input_ids.extend(_fake_input_ids)
            batch_audios = fake_audios
            batch_audlens[0] = 1

        if len(fake_input_ids) != 0:
luopl's avatar
luopl committed
146
147
148
149
150
151
152
153
154
155
156
            if self.tokenizer.padding_side == "right":
                features[0]["input_ids"] = features[0]["input_ids"] + fake_input_ids
                features[0]["attention_mask"] = features[0]["attention_mask"] + [0] * len(fake_input_ids)
                features[0]["labels"] = features[0]["labels"] + [IGNORE_INDEX] * len(fake_input_ids)
            else:
                features[0]["input_ids"] = fake_input_ids + features[0]["input_ids"]
                features[0]["attention_mask"] = [0] * len(fake_input_ids) + features[0]["attention_mask"]
                features[0]["labels"] = [IGNORE_INDEX] * len(fake_input_ids) + features[0]["labels"]

            batch_input_ids[0] = features[0]["input_ids"]

luopl's avatar
luopl committed
157
        mm_inputs = self.template.mm_plugin.get_mm_inputs(
chenych's avatar
chenych committed
158
159
160
161
162
163
164
165
            batch_images,
            batch_videos,
            batch_audios,
            batch_imglens,
            batch_vidlens,
            batch_audlens,
            batch_input_ids,
            self.processor,
luopl's avatar
luopl committed
166
167
168
169
170
171
        )
        if "token_type_ids" in mm_inputs:
            token_type_ids = mm_inputs.pop("token_type_ids")
            for i, feature in enumerate(features):
                feature["token_type_ids"] = token_type_ids[i]

chenych's avatar
chenych committed
172
        features: dict[str, torch.Tensor] = super().__call__(features)
luopl's avatar
luopl committed
173
174

        if self.model is not None and hasattr(self.model, "get_rope_index"):  # for qwen2vl mrope
chenych's avatar
chenych committed
175
176
177
178
179
180
            rope_index_kwargs = {
                "input_ids": features["input_ids"],
                "image_grid_thw": mm_inputs.get("image_grid_thw"),
                "video_grid_thw": mm_inputs.get("video_grid_thw"),
                "attention_mask": features["attention_mask"],
            }
chenych's avatar
chenych committed
181
            if "second_per_grid_ts" in mm_inputs:  # for qwen2vl
chenych's avatar
chenych committed
182
                rope_index_kwargs["second_per_grid_ts"] = mm_inputs.get("second_per_grid_ts")
chenych's avatar
chenych committed
183
184
185
186
            if "video_second_per_grid" in mm_inputs:  # for qwen2omni
                rope_index_kwargs["second_per_grids"] = mm_inputs.get("video_second_per_grid")

            if getattr(self.model.config, "model_type", None) == "qwen2_5_omni_thinker":  # for qwen2omni
chenych's avatar
chenych committed
187
                rope_index_kwargs["use_audio_in_video"] = getattr(self.processor, "use_audio_in_video", False)
chenych's avatar
chenych committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
                feature_attention_mask = mm_inputs.get("feature_attention_mask", None)
                if feature_attention_mask is not None:
                    audio_feature_lengths = torch.sum(
                        feature_attention_mask, dim=1
                    )  # FIXME need to get video image lengths
                    rope_index_kwargs["audio_seqlens"] = audio_feature_lengths  # prepare for input

                delta0 = (1 - rope_index_kwargs["attention_mask"]).sum(dim=-1).unsqueeze(1)
                # avoid conflict
                new_position_ids, rope_deltas = self.model.get_rope_index(**rope_index_kwargs)
                features["position_ids"], features["rope_deltas"] = (
                    new_position_ids.clone(),
                    rope_deltas - delta0,
                )  # avoid inplace operation FIXME
            else:  # for qwen2vl
                features["position_ids"], features["rope_deltas"] = self.model.get_rope_index(**rope_index_kwargs)
luopl's avatar
luopl committed
204
205
206
207
208
209
210

        if "cross_attention_mask" in mm_inputs:  # for mllama inputs when pad_to_multiple_of is enabled
            cross_attention_mask = mm_inputs.pop("cross_attention_mask")
            seq_len = features["input_ids"].size(1)
            orig_len = cross_attention_mask.size(1)
            mm_inputs["cross_attention_mask"] = F.pad(cross_attention_mask, (0, 0, 0, 0, 0, seq_len - orig_len))

luopl's avatar
luopl committed
211
        features.update(mm_inputs)
luopl's avatar
luopl committed
212

luopl's avatar
luopl committed
213
214
215
216
217
        if "image_bound" in features:  # for minicpmv inputs
            bsz, seq_length = features["input_ids"].shape
            features["position_ids"] = torch.arange(seq_length).long().repeat(bsz, 1)
            return {"data": features, "input_ids": features["input_ids"], "labels": features["labels"]}

luopl's avatar
luopl committed
218
219
220
221
222
        return features


@dataclass
class SFTDataCollatorWith4DAttentionMask(MultiModalDataCollatorForSeq2Seq):
chenych's avatar
chenych committed
223
    r"""Data collator for 4d attention mask."""
chenych's avatar
chenych committed
224
225
226
227
228

    block_diag_attn: bool = False
    attn_implementation: Literal["eager", "sdpa", "flash_attention_2"] = "eager"
    compute_dtype: "torch.dtype" = torch.float32

chenych's avatar
chenych committed
229
    def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
chenych's avatar
chenych committed
230
231
232
233
        features = super().__call__(features)
        if self.block_diag_attn and self.attn_implementation != "flash_attention_2":
            features["attention_mask"] = prepare_4d_attention_mask(features["attention_mask"], self.compute_dtype)

luopl's avatar
luopl committed
234
235
236
237
        for key, value in features.items():  # cast data dtype for paligemma
            if torch.is_tensor(value) and torch.is_floating_point(value):
                features[key] = value.to(self.compute_dtype)

chenych's avatar
chenych committed
238
239
240
241
        return features


@dataclass
luopl's avatar
luopl committed
242
class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
chenych's avatar
chenych committed
243
    r"""Data collator for pairwise data."""
chenych's avatar
chenych committed
244

chenych's avatar
chenych committed
245
246
    def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
        r"""Pad batched data to the longest sequence in the batch.
chenych's avatar
chenych committed
247
248
249
250
251
252
253
254

        We generate 2 * n examples where the first n examples represent chosen examples and
        the last n examples represent rejected examples.
        """
        concatenated_features = []
        for key in ("chosen", "rejected"):
            for feature in features:
                target_feature = {
luopl's avatar
luopl committed
255
256
257
                    "input_ids": feature[f"{key}_input_ids"],
                    "attention_mask": feature[f"{key}_attention_mask"],
                    "labels": feature[f"{key}_labels"],
luopl's avatar
luopl committed
258
259
                    "images": feature["images"],
                    "videos": feature["videos"],
chenych's avatar
chenych committed
260
                    "audios": feature["audios"],
chenych's avatar
chenych committed
261
262
263
264
265
266
267
                }
                concatenated_features.append(target_feature)

        return super().__call__(concatenated_features)


@dataclass
luopl's avatar
luopl committed
268
class KTODataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
chenych's avatar
chenych committed
269
    r"""Data collator for KTO data."""
chenych's avatar
chenych committed
270

chenych's avatar
chenych committed
271
    def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
chenych's avatar
chenych committed
272
273
274
275
276
277
278
279
        target_features = []
        kl_features = []
        kto_tags = []
        for feature in features:
            target_feature = {
                "input_ids": feature["input_ids"],
                "attention_mask": feature["attention_mask"],
                "labels": feature["labels"],
luopl's avatar
luopl committed
280
281
                "images": feature["images"],
                "videos": feature["videos"],
chenych's avatar
chenych committed
282
                "audios": feature["audios"],
chenych's avatar
chenych committed
283
284
285
286
287
            }
            kl_feature = {
                "input_ids": feature["kl_input_ids"],
                "attention_mask": feature["kl_attention_mask"],
                "labels": feature["kl_labels"],
luopl's avatar
luopl committed
288
289
                "images": feature["images"],
                "videos": feature["videos"],
chenych's avatar
chenych committed
290
                "audios": feature["audios"],
chenych's avatar
chenych committed
291
292
293
294
295
296
297
298
299
300
            }
            target_features.append(target_feature)
            kl_features.append(kl_feature)
            kto_tags.append(feature["kto_tags"])

        batch = super().__call__(target_features)
        kl_batch = super().__call__(kl_features)
        batch["kl_input_ids"] = kl_batch["input_ids"]
        batch["kl_attention_mask"] = kl_batch["attention_mask"]
        batch["kl_labels"] = kl_batch["labels"]
chenych's avatar
chenych committed
301
        if "cross_attention_mask" in kl_batch:  # for mllama inputs
chenych's avatar
chenych committed
302
            batch["kl_cross_attention_mask"] = kl_batch["cross_attention_mask"]
chenych's avatar
chenych committed
303

luopl's avatar
luopl committed
304
        if "token_type_ids" in kl_batch:
chenych's avatar
chenych committed
305
306
307
308
            batch["kl_token_type_ids"] = kl_batch["token_type_ids"]

        batch["kto_tags"] = torch.tensor(kto_tags)
        return batch