collator.py 12.1 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2024 OpenAccess AI Collective and the LlamaFactory team.
#
# This code is inspired by the OpenAccess AI Collective's axolotl library.
# https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/src/axolotl/monkeypatch/utils.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
luopl's avatar
luopl committed
19
from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Sequence
chenych's avatar
chenych committed
20

chenych's avatar
chenych committed
21
import numpy as np
chenych's avatar
chenych committed
22
import torch
luopl's avatar
luopl committed
23
import torch.nn.functional as F
chenych's avatar
chenych committed
24
25
from transformers import DataCollatorForSeq2Seq

chenych's avatar
chenych committed
26
from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER
luopl's avatar
luopl committed
27
28
29
30
31
32
from ..extras.packages import is_pillow_available


if is_pillow_available():
    from PIL import Image

chenych's avatar
chenych committed
33

luopl's avatar
luopl committed
34
35
36
37
38
39
if TYPE_CHECKING:
    from transformers import ProcessorMixin

    from .template import Template


chenych's avatar
chenych committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def prepare_4d_attention_mask(attention_mask_with_indices: "torch.Tensor", dtype: "torch.dtype") -> "torch.Tensor":
    r"""
    Expands the attention mask with indices from (batch_size, seq_len) to (batch_size, 1, seq_len, seq_len),
    while handles packed sequences and transforms the mask to lower triangular form to prevent future peeking.

    e.g.
    ```python
    # input
    [[1, 1, 2, 2, 2, 0]]
    # output
    [
        [
            [
                [o, x, x, x, x, x],
                [o, o, x, x, x, x],
                [x, x, o, x, x, x],
                [x, x, o, o, x, x],
                [x, x, o, o, o, x],
                [x, x, x, x, x, x],
            ]
        ]
    ]
    ```
    where `o` equals to `0.0`, `x` equals to `min_dtype`.
    """
    bsz, seq_len = attention_mask_with_indices.size()
    min_dtype = torch.finfo(dtype).min
    expanded_mask = attention_mask_with_indices[:, None, None, :].expand(bsz, 1, seq_len, seq_len)
    # Create a binary mask from the original mask where zeros remain zeros and all other values are set to one
    padding_mask = torch.where(expanded_mask != 0, 1, 0)
    # Create a block-diagonal mask.
    attention_mask_4d = torch.eq(expanded_mask, expanded_mask.transpose(-1, -2)).int() * padding_mask
    # Use the lower triangular mask to zero out the upper triangular part
    attention_mask_4d *= torch.tril(torch.ones((seq_len, seq_len), dtype=torch.long))
    # Invert the attention mask.
    attention_mask_4d = torch.where(attention_mask_4d != 0, torch.tensor(0, dtype=dtype), min_dtype)
    return attention_mask_4d


@dataclass
luopl's avatar
luopl committed
80
81
82
83
class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
    r"""
    Data collator that supports VLMs.

chenych's avatar
chenych committed
84
    Features should contain input_ids, attention_mask, labels, and optionally contain images, videos and audios.
luopl's avatar
luopl committed
85
86
87
88
89
    """

    template: Optional["Template"] = None
    processor: Optional["ProcessorMixin"] = None

luopl's avatar
luopl committed
90
91
92
93
    def __post_init__(self):
        if self.template is None:
            raise ValueError("Template is required for MultiModalDataCollator.")

luopl's avatar
luopl committed
94
    def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
chenych's avatar
chenych committed
95
96
        batch_images, batch_videos, batch_audios = [], [], []
        batch_imglens, batch_vidlens, batch_audlens, batch_input_ids = [], [], [], []
luopl's avatar
luopl committed
97
98
99
        for feature in features:
            images = feature.pop("images", None) or []
            videos = feature.pop("videos", None) or []
chenych's avatar
chenych committed
100
            audios = feature.pop("audios", None) or []
luopl's avatar
luopl committed
101
102
            batch_images.extend(images)
            batch_videos.extend(videos)
chenych's avatar
chenych committed
103
            batch_audios.extend(audios)
luopl's avatar
luopl committed
104
105
            batch_imglens.append(len(images))
            batch_vidlens.append(len(videos))
chenych's avatar
chenych committed
106
            batch_audlens.append(len(audios))
luopl's avatar
luopl committed
107
            batch_input_ids.append(feature["input_ids"])
luopl's avatar
luopl committed
108

chenych's avatar
chenych committed
109
        fake_input_ids = []
luopl's avatar
luopl committed
110
        if (
chenych's avatar
chenych committed
111
            self.template.mm_plugin.image_token is not None and sum(batch_imglens) == 0 and sum(batch_vidlens) == 0
luopl's avatar
luopl committed
112
113
114
        ):  # avoid process hanging in zero3/fsdp case
            fake_messages = [{"role": "user", "content": IMAGE_PLACEHOLDER}]
            fake_images = [Image.new("RGB", (64, 64), (255, 255, 255))]
chenych's avatar
chenych committed
115
116
            fake_messages = self.template.mm_plugin.process_messages(
                fake_messages, fake_images, [], [], self.processor
luopl's avatar
luopl committed
117
            )
chenych's avatar
chenych committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
            _fake_input_ids = self.tokenizer.encode(fake_messages[0]["content"], add_special_tokens=False)
            _fake_input_ids, _ = self.template.mm_plugin.process_token_ids(
                _fake_input_ids, None, fake_images, [], [], self.tokenizer, self.processor
            )
            fake_input_ids.extend(_fake_input_ids)
            batch_images = fake_images
            batch_imglens[0] = 1

        if (
            self.template.mm_plugin.audio_token is not None and sum(batch_audlens) == 0
        ):  # avoid process hanging in zero3/fsdp case
            fake_messages = [{"role": "user", "content": AUDIO_PLACEHOLDER}]
            fake_audios = [np.zeros(1600)]
            fake_messages = self.template.mm_plugin.process_messages(
                fake_messages, [], [], fake_audios, self.processor
            )
            _fake_input_ids = self.tokenizer.encode(fake_messages[0]["content"], add_special_tokens=False)
            _fake_input_ids, _ = self.template.mm_plugin.process_token_ids(
                _fake_input_ids, None, [], [], fake_audios, self.tokenizer, self.processor
            )
            fake_input_ids.extend(_fake_input_ids)
            batch_audios = fake_audios
            batch_audlens[0] = 1

        if len(fake_input_ids) != 0:
luopl's avatar
luopl committed
143
144
145
146
147
148
149
150
151
152
153
            if self.tokenizer.padding_side == "right":
                features[0]["input_ids"] = features[0]["input_ids"] + fake_input_ids
                features[0]["attention_mask"] = features[0]["attention_mask"] + [0] * len(fake_input_ids)
                features[0]["labels"] = features[0]["labels"] + [IGNORE_INDEX] * len(fake_input_ids)
            else:
                features[0]["input_ids"] = fake_input_ids + features[0]["input_ids"]
                features[0]["attention_mask"] = [0] * len(fake_input_ids) + features[0]["attention_mask"]
                features[0]["labels"] = [IGNORE_INDEX] * len(fake_input_ids) + features[0]["labels"]

            batch_input_ids[0] = features[0]["input_ids"]

luopl's avatar
luopl committed
154
        mm_inputs = self.template.mm_plugin.get_mm_inputs(
chenych's avatar
chenych committed
155
156
157
158
159
160
161
162
            batch_images,
            batch_videos,
            batch_audios,
            batch_imglens,
            batch_vidlens,
            batch_audlens,
            batch_input_ids,
            self.processor,
luopl's avatar
luopl committed
163
164
165
166
167
168
169
        )
        if "token_type_ids" in mm_inputs:
            token_type_ids = mm_inputs.pop("token_type_ids")
            for i, feature in enumerate(features):
                feature["token_type_ids"] = token_type_ids[i]

        features: Dict[str, "torch.Tensor"] = super().__call__(features)
luopl's avatar
luopl committed
170
171

        if self.model is not None and hasattr(self.model, "get_rope_index"):  # for qwen2vl mrope
chenych's avatar
chenych committed
172
173
174
175
176
177
178
179
180
181
            rope_index_kwargs = {
                "input_ids": features["input_ids"],
                "image_grid_thw": mm_inputs.get("image_grid_thw"),
                "video_grid_thw": mm_inputs.get("video_grid_thw"),
                "attention_mask": features["attention_mask"],
            }
            if "second_per_grid_ts" in mm_inputs:
                rope_index_kwargs["second_per_grid_ts"] = mm_inputs.get("second_per_grid_ts")

            features["position_ids"], features["rope_deltas"] = self.model.get_rope_index(**rope_index_kwargs)
luopl's avatar
luopl committed
182
183
184
185
186
187
188

        if "cross_attention_mask" in mm_inputs:  # for mllama inputs when pad_to_multiple_of is enabled
            cross_attention_mask = mm_inputs.pop("cross_attention_mask")
            seq_len = features["input_ids"].size(1)
            orig_len = cross_attention_mask.size(1)
            mm_inputs["cross_attention_mask"] = F.pad(cross_attention_mask, (0, 0, 0, 0, 0, seq_len - orig_len))

luopl's avatar
luopl committed
189
        features.update(mm_inputs)
luopl's avatar
luopl committed
190

luopl's avatar
luopl committed
191
192
193
194
195
        if "image_bound" in features:  # for minicpmv inputs
            bsz, seq_length = features["input_ids"].shape
            features["position_ids"] = torch.arange(seq_length).long().repeat(bsz, 1)
            return {"data": features, "input_ids": features["input_ids"], "labels": features["labels"]}

luopl's avatar
luopl committed
196
197
198
199
200
        return features


@dataclass
class SFTDataCollatorWith4DAttentionMask(MultiModalDataCollatorForSeq2Seq):
chenych's avatar
chenych committed
201
202
203
204
205
206
207
208
209
210
211
212
213
    r"""
    Data collator for 4d attention mask.
    """

    block_diag_attn: bool = False
    attn_implementation: Literal["eager", "sdpa", "flash_attention_2"] = "eager"
    compute_dtype: "torch.dtype" = torch.float32

    def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
        features = super().__call__(features)
        if self.block_diag_attn and self.attn_implementation != "flash_attention_2":
            features["attention_mask"] = prepare_4d_attention_mask(features["attention_mask"], self.compute_dtype)

luopl's avatar
luopl committed
214
215
216
217
        for key, value in features.items():  # cast data dtype for paligemma
            if torch.is_tensor(value) and torch.is_floating_point(value):
                features[key] = value.to(self.compute_dtype)

chenych's avatar
chenych committed
218
219
220
221
        return features


@dataclass
luopl's avatar
luopl committed
222
class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
chenych's avatar
chenych committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    r"""
    Data collator for pairwise data.
    """

    def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
        r"""
        Pads batched data to the longest sequence in the batch.

        We generate 2 * n examples where the first n examples represent chosen examples and
        the last n examples represent rejected examples.
        """
        concatenated_features = []
        for key in ("chosen", "rejected"):
            for feature in features:
                target_feature = {
luopl's avatar
luopl committed
238
239
240
                    "input_ids": feature[f"{key}_input_ids"],
                    "attention_mask": feature[f"{key}_attention_mask"],
                    "labels": feature[f"{key}_labels"],
luopl's avatar
luopl committed
241
242
                    "images": feature["images"],
                    "videos": feature["videos"],
chenych's avatar
chenych committed
243
                    "audios": feature["audios"],
chenych's avatar
chenych committed
244
245
246
247
248
249
250
                }
                concatenated_features.append(target_feature)

        return super().__call__(concatenated_features)


@dataclass
luopl's avatar
luopl committed
251
class KTODataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
chenych's avatar
chenych committed
252
253
254
255
256
257
258
259
260
261
262
263
264
    r"""
    Data collator for KTO data.
    """

    def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
        target_features = []
        kl_features = []
        kto_tags = []
        for feature in features:
            target_feature = {
                "input_ids": feature["input_ids"],
                "attention_mask": feature["attention_mask"],
                "labels": feature["labels"],
luopl's avatar
luopl committed
265
266
                "images": feature["images"],
                "videos": feature["videos"],
chenych's avatar
chenych committed
267
                "audios": feature["audios"],
chenych's avatar
chenych committed
268
269
270
271
272
            }
            kl_feature = {
                "input_ids": feature["kl_input_ids"],
                "attention_mask": feature["kl_attention_mask"],
                "labels": feature["kl_labels"],
luopl's avatar
luopl committed
273
274
                "images": feature["images"],
                "videos": feature["videos"],
chenych's avatar
chenych committed
275
                "audios": feature["audios"],
chenych's avatar
chenych committed
276
277
278
279
280
281
282
283
284
285
            }
            target_features.append(target_feature)
            kl_features.append(kl_feature)
            kto_tags.append(feature["kto_tags"])

        batch = super().__call__(target_features)
        kl_batch = super().__call__(kl_features)
        batch["kl_input_ids"] = kl_batch["input_ids"]
        batch["kl_attention_mask"] = kl_batch["attention_mask"]
        batch["kl_labels"] = kl_batch["labels"]
chenych's avatar
chenych committed
286
287
        if "cross_attention_mask" in kl_batch:  # for mllama inputs.
            batch["kl_cross_attention_mask"] = kl_batch["cross_attention_mask"]
luopl's avatar
luopl committed
288
        if "token_type_ids" in kl_batch:
chenych's avatar
chenych committed
289
290
291
292
            batch["kl_token_type_ids"] = kl_batch["token_type_ids"]

        batch["kto_tags"] = torch.tensor(kto_tags)
        return batch