"examples/dreambooth/README_flux2.md" did not exist on "6bfd13f07abbee29c61251f6573d0b103613f4ca"
test_mm_plugin.py 9.29 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
luopl's avatar
luopl committed
16
from typing import TYPE_CHECKING, Any, Dict, List, Sequence
luopl's avatar
luopl committed
17
18
19
20
21
22

import pytest
import torch
from PIL import Image

from llamafactory.data.mm_plugin import get_mm_plugin
luopl's avatar
luopl committed
23
from llamafactory.hparams import get_infer_args
luopl's avatar
luopl committed
24
25
26
27
28
29
30
31
from llamafactory.model import load_tokenizer


if TYPE_CHECKING:
    from transformers import PreTrainedTokenizer, ProcessorMixin
    from transformers.image_processing_utils import BaseImageProcessor

    from llamafactory.data.mm_plugin import BasePlugin
luopl's avatar
luopl committed
32
    from llamafactory.model.loader import TokenizerModule
luopl's avatar
luopl committed
33
34


luopl's avatar
luopl committed
35
HF_TOKEN = os.getenv("HF_TOKEN")
luopl's avatar
luopl committed
36

luopl's avatar
luopl committed
37
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
luopl's avatar
luopl committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

MM_MESSAGES = [
    {"role": "user", "content": "<image>What is in this image?"},
    {"role": "assistant", "content": "A cat."},
]

TEXT_MESSAGES = [
    {"role": "user", "content": "How are you"},
    {"role": "assistant", "content": "I am fine!"},
]

IMAGES = [Image.new("RGB", (32, 32), (255, 255, 255))]

NO_IMAGES = []

NO_VIDEOS = []

IMGLENS = [1]

NO_IMGLENS = [0]

NO_VIDLENS = [0]

INPUT_IDS = [0, 1, 2, 3, 4]

LABELS = [0, 1, 2, 3, 4]

luopl's avatar
luopl committed
65
BATCH_IDS = [[1] * 1024]
luopl's avatar
luopl committed
66
67
68
69
70
71
72
73
74
75
76
77


def _get_mm_inputs(processor: "ProcessorMixin") -> Dict[str, "torch.Tensor"]:
    image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
    return image_processor(images=IMAGES, return_tensors="pt")


def _is_close(batch_a: Dict[str, Any], batch_b: Dict[str, Any]) -> None:
    assert batch_a.keys() == batch_b.keys()
    for key in batch_a.keys():
        if isinstance(batch_a[key], torch.Tensor):
            assert torch.allclose(batch_a[key], batch_b[key], rtol=1e-4, atol=1e-5)
luopl's avatar
luopl committed
78
79
80
81
        elif isinstance(batch_a[key], list) and all(isinstance(item, torch.Tensor) for item in batch_a[key]):
            assert len(batch_a[key]) == len(batch_b[key])
            for tensor_a, tensor_b in zip(batch_a[key], batch_b[key]):
                assert torch.allclose(tensor_a, tensor_b, rtol=1e-4, atol=1e-5)
luopl's avatar
luopl committed
82
83
84
85
        else:
            assert batch_a[key] == batch_b[key]


luopl's avatar
luopl committed
86
87
88
def _load_tokenizer_module(model_name_or_path: str) -> "TokenizerModule":
    model_args, *_ = get_infer_args({"model_name_or_path": model_name_or_path, "template": "default"})
    return load_tokenizer(model_args)
luopl's avatar
luopl committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107


def _check_plugin(
    plugin: "BasePlugin",
    tokenizer: "PreTrainedTokenizer",
    processor: "ProcessorMixin",
    expected_mm_messages: Sequence[Dict[str, str]] = MM_MESSAGES,
    expected_input_ids: List[int] = INPUT_IDS,
    expected_labels: List[int] = LABELS,
    expected_mm_inputs: Dict[str, Any] = {},
    expected_no_mm_inputs: Dict[str, Any] = {},
) -> None:
    # test mm_messages
    assert plugin.process_messages(MM_MESSAGES, IMAGES, NO_VIDEOS, processor) == expected_mm_messages
    assert plugin.process_token_ids(INPUT_IDS, LABELS, IMAGES, NO_VIDEOS, tokenizer, processor) == (
        expected_input_ids,
        expected_labels,
    )
    _is_close(
luopl's avatar
luopl committed
108
        plugin.get_mm_inputs(IMAGES, NO_VIDEOS, IMGLENS, NO_VIDLENS, BATCH_IDS, processor),
luopl's avatar
luopl committed
109
110
111
112
113
114
115
116
117
        expected_mm_inputs,
    )
    # test text_messages
    assert plugin.process_messages(TEXT_MESSAGES, NO_IMAGES, NO_VIDEOS, processor) == TEXT_MESSAGES
    assert plugin.process_token_ids(INPUT_IDS, LABELS, NO_IMAGES, NO_VIDEOS, tokenizer, processor) == (
        INPUT_IDS,
        LABELS,
    )
    _is_close(
luopl's avatar
luopl committed
118
        plugin.get_mm_inputs(NO_IMAGES, NO_VIDEOS, NO_IMGLENS, NO_VIDLENS, BATCH_IDS, processor),
luopl's avatar
luopl committed
119
120
121
122
123
        expected_no_mm_inputs,
    )


def test_base_plugin():
luopl's avatar
luopl committed
124
    tokenizer_module = _load_tokenizer_module(model_name_or_path=TINY_LLAMA)
luopl's avatar
luopl committed
125
    base_plugin = get_mm_plugin(name="base", image_token="<image>")
luopl's avatar
luopl committed
126
    check_inputs = {"plugin": base_plugin, **tokenizer_module}
luopl's avatar
luopl committed
127
128
129
130
131
    _check_plugin(**check_inputs)


def test_llava_plugin():
    image_seqlen = 576
luopl's avatar
luopl committed
132
133
134
    tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/llava-1.5-7b-hf")
    llava_plugin = get_mm_plugin(name="llava", image_token="<image>")
    check_inputs = {"plugin": llava_plugin, **tokenizer_module}
luopl's avatar
luopl committed
135
136
137
138
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
        for message in MM_MESSAGES
    ]
luopl's avatar
luopl committed
139
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"])
luopl's avatar
luopl committed
140
141
142
143
144
    _check_plugin(**check_inputs)


def test_llava_next_plugin():
    image_seqlen = 1176
luopl's avatar
luopl committed
145
146
147
    tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/llava-v1.6-vicuna-7b-hf")
    llava_next_plugin = get_mm_plugin(name="llava_next", image_token="<image>")
    check_inputs = {"plugin": llava_next_plugin, **tokenizer_module}
luopl's avatar
luopl committed
148
149
150
151
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
        for message in MM_MESSAGES
    ]
luopl's avatar
luopl committed
152
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"])
luopl's avatar
luopl committed
153
154
155
156
157
    _check_plugin(**check_inputs)


def test_llava_next_video_plugin():
    image_seqlen = 1176
luopl's avatar
luopl committed
158
159
160
    tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/LLaVA-NeXT-Video-7B-hf")
    llava_next_video_plugin = get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>")
    check_inputs = {"plugin": llava_next_video_plugin, **tokenizer_module}
luopl's avatar
luopl committed
161
162
163
164
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
        for message in MM_MESSAGES
    ]
luopl's avatar
luopl committed
165
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"])
luopl's avatar
luopl committed
166
167
168
169
170
171
    _check_plugin(**check_inputs)


@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
def test_paligemma_plugin():
    image_seqlen = 256
luopl's avatar
luopl committed
172
173
174
    tokenizer_module = _load_tokenizer_module(model_name_or_path="google/paligemma-3b-pt-224")
    paligemma_plugin = get_mm_plugin(name="paligemma", image_token="<image>")
    check_inputs = {"plugin": paligemma_plugin, **tokenizer_module}
luopl's avatar
luopl committed
175
176
177
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "") for key, value in message.items()} for message in MM_MESSAGES
    ]
luopl's avatar
luopl committed
178
179
180
    check_inputs["expected_input_ids"] = [
        tokenizer_module["tokenizer"].convert_tokens_to_ids(paligemma_plugin.image_token)
    ] * image_seqlen + INPUT_IDS
luopl's avatar
luopl committed
181
    check_inputs["expected_labels"] = [-100] * image_seqlen + LABELS
luopl's avatar
luopl committed
182
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"])
luopl's avatar
luopl committed
183
184
185
186
187
    check_inputs["expected_mm_inputs"]["token_type_ids"] = [[0] * image_seqlen + [1] * (1024 - image_seqlen)]
    check_inputs["expected_no_mm_inputs"] = {"token_type_ids": [[1] * 1024]}
    _check_plugin(**check_inputs)


luopl's avatar
luopl committed
188
189
def test_pixtral_plugin():
    image_slice_height, image_slice_width = 2, 2
luopl's avatar
luopl committed
190
191
192
    tokenizer_module = _load_tokenizer_module(model_name_or_path="mistral-community/pixtral-12b")
    pixtral_plugin = get_mm_plugin(name="pixtral", image_token="[IMG]")
    check_inputs = {"plugin": pixtral_plugin, **tokenizer_module}
luopl's avatar
luopl committed
193
194
195
196
197
198
199
200
201
202
203
    check_inputs["expected_mm_messages"] = [
        {
            key: value.replace(
                "<image>",
                ("{}[IMG_BREAK]".format("[IMG]" * image_slice_width) * image_slice_height).rsplit("[IMG_BREAK]", 1)[0]
                + "[IMG_END]",
            )
            for key, value in message.items()
        }
        for message in MM_MESSAGES
    ]
luopl's avatar
luopl committed
204
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"])
luopl's avatar
luopl committed
205
206
207
208
209
    check_inputs["expected_mm_inputs"].pop("image_sizes")
    check_inputs["expected_mm_inputs"]["pixel_values"] = check_inputs["expected_mm_inputs"]["pixel_values"][0]
    _check_plugin(**check_inputs)


luopl's avatar
luopl committed
210
211
def test_qwen2_vl_plugin():
    image_seqlen = 4
luopl's avatar
luopl committed
212
213
214
    tokenizer_module = _load_tokenizer_module(model_name_or_path="Qwen/Qwen2-VL-7B-Instruct")
    qwen2_vl_plugin = get_mm_plugin(name="qwen2_vl", image_token="<|image_pad|>")
    check_inputs = {"plugin": qwen2_vl_plugin, **tokenizer_module}
luopl's avatar
luopl committed
215
216
217
218
219
220
221
    check_inputs["expected_mm_messages"] = [
        {
            key: value.replace("<image>", "<|vision_start|>{}<|vision_end|>".format("<|image_pad|>" * image_seqlen))
            for key, value in message.items()
        }
        for message in MM_MESSAGES
    ]
luopl's avatar
luopl committed
222
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"])
luopl's avatar
luopl committed
223
224
225
226
227
    _check_plugin(**check_inputs)


def test_video_llava_plugin():
    image_seqlen = 256
luopl's avatar
luopl committed
228
229
230
    tokenizer_module = _load_tokenizer_module(model_name_or_path="LanguageBind/Video-LLaVA-7B-hf")
    video_llava_plugin = get_mm_plugin(name="video_llava", image_token="<image>", video_token="<video>")
    check_inputs = {"plugin": video_llava_plugin, **tokenizer_module}
luopl's avatar
luopl committed
231
232
233
234
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
        for message in MM_MESSAGES
    ]
luopl's avatar
luopl committed
235
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"])
luopl's avatar
luopl committed
236
    _check_plugin(**check_inputs)