test_mm_plugin.py 9.38 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from typing import TYPE_CHECKING, Any, Dict, List, Sequence, Tuple

import pytest
import torch
from PIL import Image

from llamafactory.data.mm_plugin import get_mm_plugin
from llamafactory.hparams import ModelArguments
from llamafactory.model import load_tokenizer


if TYPE_CHECKING:
    from transformers import PreTrainedTokenizer, ProcessorMixin
    from transformers.image_processing_utils import BaseImageProcessor

    from llamafactory.data.mm_plugin import BasePlugin


luopl's avatar
luopl committed
34
HF_TOKEN = os.getenv("HF_TOKEN")
luopl's avatar
luopl committed
35

luopl's avatar
luopl committed
36
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
luopl's avatar
luopl committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

MM_MESSAGES = [
    {"role": "user", "content": "<image>What is in this image?"},
    {"role": "assistant", "content": "A cat."},
]

TEXT_MESSAGES = [
    {"role": "user", "content": "How are you"},
    {"role": "assistant", "content": "I am fine!"},
]

IMAGES = [Image.new("RGB", (32, 32), (255, 255, 255))]

NO_IMAGES = []

NO_VIDEOS = []

IMGLENS = [1]

NO_IMGLENS = [0]

NO_VIDLENS = [0]

INPUT_IDS = [0, 1, 2, 3, 4]

LABELS = [0, 1, 2, 3, 4]

luopl's avatar
luopl committed
64
BATCH_IDS = [[1] * 1024]
luopl's avatar
luopl committed
65
66
67
68
69
70
71
72
73
74
75
76


def _get_mm_inputs(processor: "ProcessorMixin") -> Dict[str, "torch.Tensor"]:
    image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
    return image_processor(images=IMAGES, return_tensors="pt")


def _is_close(batch_a: Dict[str, Any], batch_b: Dict[str, Any]) -> None:
    assert batch_a.keys() == batch_b.keys()
    for key in batch_a.keys():
        if isinstance(batch_a[key], torch.Tensor):
            assert torch.allclose(batch_a[key], batch_b[key], rtol=1e-4, atol=1e-5)
luopl's avatar
luopl committed
77
78
79
80
        elif isinstance(batch_a[key], list) and all(isinstance(item, torch.Tensor) for item in batch_a[key]):
            assert len(batch_a[key]) == len(batch_b[key])
            for tensor_a, tensor_b in zip(batch_a[key], batch_b[key]):
                assert torch.allclose(tensor_a, tensor_b, rtol=1e-4, atol=1e-5)
luopl's avatar
luopl committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        else:
            assert batch_a[key] == batch_b[key]


def _load_tokenizer_module(model_name_or_path: str) -> Tuple["PreTrainedTokenizer", "ProcessorMixin"]:
    model_args = ModelArguments(model_name_or_path=model_name_or_path)
    tokenizer_module = load_tokenizer(model_args)
    return tokenizer_module["tokenizer"], tokenizer_module["processor"]


def _check_plugin(
    plugin: "BasePlugin",
    tokenizer: "PreTrainedTokenizer",
    processor: "ProcessorMixin",
    expected_mm_messages: Sequence[Dict[str, str]] = MM_MESSAGES,
    expected_input_ids: List[int] = INPUT_IDS,
    expected_labels: List[int] = LABELS,
    expected_mm_inputs: Dict[str, Any] = {},
    expected_no_mm_inputs: Dict[str, Any] = {},
) -> None:
    # test mm_messages
    assert plugin.process_messages(MM_MESSAGES, IMAGES, NO_VIDEOS, processor) == expected_mm_messages
    assert plugin.process_token_ids(INPUT_IDS, LABELS, IMAGES, NO_VIDEOS, tokenizer, processor) == (
        expected_input_ids,
        expected_labels,
    )
    _is_close(
luopl's avatar
luopl committed
108
        plugin.get_mm_inputs(IMAGES, NO_VIDEOS, IMGLENS, NO_VIDLENS, BATCH_IDS, processor),
luopl's avatar
luopl committed
109
110
111
112
113
114
115
116
117
        expected_mm_inputs,
    )
    # test text_messages
    assert plugin.process_messages(TEXT_MESSAGES, NO_IMAGES, NO_VIDEOS, processor) == TEXT_MESSAGES
    assert plugin.process_token_ids(INPUT_IDS, LABELS, NO_IMAGES, NO_VIDEOS, tokenizer, processor) == (
        INPUT_IDS,
        LABELS,
    )
    _is_close(
luopl's avatar
luopl committed
118
        plugin.get_mm_inputs(NO_IMAGES, NO_VIDEOS, NO_IMGLENS, NO_VIDLENS, BATCH_IDS, processor),
luopl's avatar
luopl committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        expected_no_mm_inputs,
    )


def test_base_plugin():
    tokenizer, processor = _load_tokenizer_module(model_name_or_path=TINY_LLAMA)
    base_plugin = get_mm_plugin(name="base", image_token="<image>")
    check_inputs = {"plugin": base_plugin, "tokenizer": tokenizer, "processor": processor}
    _check_plugin(**check_inputs)


def test_llava_plugin():
    tokenizer, processor = _load_tokenizer_module(model_name_or_path="llava-hf/llava-1.5-7b-hf")
    llava_plugin = get_mm_plugin(name="llava", image_token="<image>")
    image_seqlen = 576
    check_inputs = {"plugin": llava_plugin, "tokenizer": tokenizer, "processor": processor}
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
    _check_plugin(**check_inputs)


def test_llava_next_plugin():
    tokenizer, processor = _load_tokenizer_module(model_name_or_path="llava-hf/llava-v1.6-vicuna-7b-hf")
    llava_next_plugin = get_mm_plugin(name="llava_next", image_token="<image>")
    check_inputs = {"plugin": llava_next_plugin, "tokenizer": tokenizer, "processor": processor}
    image_seqlen = 1176
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
    _check_plugin(**check_inputs)


def test_llava_next_video_plugin():
    tokenizer, processor = _load_tokenizer_module(model_name_or_path="llava-hf/LLaVA-NeXT-Video-7B-hf")
    llava_next_video_plugin = get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>")
    check_inputs = {"plugin": llava_next_video_plugin, "tokenizer": tokenizer, "processor": processor}
    image_seqlen = 1176
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
    _check_plugin(**check_inputs)


@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
def test_paligemma_plugin():
    tokenizer, processor = _load_tokenizer_module(model_name_or_path="google/paligemma-3b-pt-224")
    paligemma_plugin = get_mm_plugin(name="paligemma", image_token="<image>")
    image_seqlen = 256
    check_inputs = {"plugin": paligemma_plugin, "tokenizer": tokenizer, "processor": processor}
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "") for key, value in message.items()} for message in MM_MESSAGES
    ]
    check_inputs["expected_input_ids"] = [tokenizer.convert_tokens_to_ids("<image>")] * image_seqlen + INPUT_IDS
    check_inputs["expected_labels"] = [-100] * image_seqlen + LABELS
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
    check_inputs["expected_mm_inputs"]["token_type_ids"] = [[0] * image_seqlen + [1] * (1024 - image_seqlen)]
    check_inputs["expected_no_mm_inputs"] = {"token_type_ids": [[1] * 1024]}
    _check_plugin(**check_inputs)


luopl's avatar
luopl committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
def test_pixtral_plugin():
    tokenizer, processor = _load_tokenizer_module(model_name_or_path="mistral-community/pixtral-12b")
    pixtral_plugin = get_mm_plugin(name="pixtral", image_token="[IMG]")
    image_slice_height, image_slice_width = 2, 2
    check_inputs = {"plugin": pixtral_plugin, "tokenizer": tokenizer, "processor": processor}
    check_inputs["expected_mm_messages"] = [
        {
            key: value.replace(
                "<image>",
                ("{}[IMG_BREAK]".format("[IMG]" * image_slice_width) * image_slice_height).rsplit("[IMG_BREAK]", 1)[0]
                + "[IMG_END]",
            )
            for key, value in message.items()
        }
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
    check_inputs["expected_mm_inputs"].pop("image_sizes")
    check_inputs["expected_mm_inputs"]["pixel_values"] = check_inputs["expected_mm_inputs"]["pixel_values"][0]
    _check_plugin(**check_inputs)


luopl's avatar
luopl committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
def test_qwen2_vl_plugin():
    tokenizer, processor = _load_tokenizer_module(model_name_or_path="Qwen/Qwen2-VL-7B-Instruct")
    qwen2_vl_plugin = get_mm_plugin(name="qwen2_vl", image_token="<|image_pad|>")
    image_seqlen = 4
    check_inputs = {"plugin": qwen2_vl_plugin, "tokenizer": tokenizer, "processor": processor}
    check_inputs["expected_mm_messages"] = [
        {
            key: value.replace("<image>", "<|vision_start|>{}<|vision_end|>".format("<|image_pad|>" * image_seqlen))
            for key, value in message.items()
        }
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
    _check_plugin(**check_inputs)


def test_video_llava_plugin():
    tokenizer, processor = _load_tokenizer_module(model_name_or_path="LanguageBind/Video-LLaVA-7B-hf")
    video_llava_plugin = get_mm_plugin(name="video_llava", image_token="<image>", video_token="<video>")
    check_inputs = {"plugin": video_llava_plugin, "tokenizer": tokenizer, "processor": processor}
    image_seqlen = 256
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
    _check_plugin(**check_inputs)