llamafy_baichuan2.py 4.13 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
14
15
16
17

import json
import os
from collections import OrderedDict
chenych's avatar
chenych committed
18
from typing import Any, Dict
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

import fire
import torch
from safetensors.torch import save_file
from tqdm import tqdm
from transformers.modeling_utils import (
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
    shard_checkpoint,
)


CONFIG_NAME = "config.json"


def save_weight(input_dir: str, output_dir: str, shard_size: str, save_safetensors: bool):
    baichuan2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
    for filepath in tqdm(os.listdir(input_dir), desc="Load weights"):
        if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"):
            shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu")
            baichuan2_state_dict.update(shard_weight)

    llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
    for key, value in tqdm(baichuan2_state_dict.items(), desc="Convert format"):
        if "W_pack" in key:
            proj_size = value.size(0) // 3
            llama2_state_dict[key.replace("W_pack", "q_proj")] = value[:proj_size, :]
            llama2_state_dict[key.replace("W_pack", "k_proj")] = value[proj_size : 2 * proj_size, :]
            llama2_state_dict[key.replace("W_pack", "v_proj")] = value[2 * proj_size :, :]
        elif "lm_head" in key:
            llama2_state_dict[key] = torch.nn.functional.normalize(value)
        else:
            llama2_state_dict[key] = value

    weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME
    shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=weights_name)

    for shard_file, shard in tqdm(shards.items(), desc="Save weights"):
        if save_safetensors:
            save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"})
        else:
            torch.save(shard, os.path.join(output_dir, shard_file))

    if index is None:
luopl's avatar
luopl committed
65
        print(f"Model weights saved in {os.path.join(output_dir, WEIGHTS_NAME)}")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
66
67
68
69
    else:
        index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME
        with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f:
            json.dump(index, f, indent=2, sort_keys=True)
luopl's avatar
luopl committed
70
        print(f"Model weights saved in {output_dir}")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
71
72
73


def save_config(input_dir: str, output_dir: str):
luopl's avatar
luopl committed
74
    with open(os.path.join(input_dir, CONFIG_NAME), encoding="utf-8") as f:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
75
76
77
78
79
80
81
82
83
        llama2_config_dict: Dict[str, Any] = json.load(f)

    llama2_config_dict["architectures"] = ["LlamaForCausalLM"]
    llama2_config_dict.pop("auto_map", None)
    llama2_config_dict.pop("tokenizer_class", None)
    llama2_config_dict["model_type"] = "llama"

    with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f:
        json.dump(llama2_config_dict, f, indent=2)
luopl's avatar
luopl committed
84
    print(f"Model config saved in {os.path.join(output_dir, CONFIG_NAME)}")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
85
86
87


def llamafy_baichuan2(
chenych's avatar
chenych committed
88
89
90
91
    input_dir: str,
    output_dir: str,
    shard_size: str = "2GB",
    save_safetensors: bool = True,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
92
):
chenych's avatar
chenych committed
93
94
95
96
97
    r"""
    Converts the Baichuan2-7B model in the same format as LLaMA2-7B.
    Usage: python llamafy_baichuan2.py --input_dir input --output_dir output
    Converted model: https://huggingface.co/hiyouga/Baichuan2-7B-Base-LLaMAfied
    """
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
98
99
100
101
102
103
104
105
106
107
108
    try:
        os.makedirs(output_dir, exist_ok=False)
    except Exception as e:
        raise print("Output dir already exists", e)

    save_weight(input_dir, output_dir, shard_size, save_safetensors)
    save_config(input_dir, output_dir)


if __name__ == "__main__":
    fire.Fire(llamafy_baichuan2)