llamafy_baichuan2.py 4.17 KB
Newer Older
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
1
# coding=utf-8
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
15
16
17
18

import json
import os
from collections import OrderedDict
chenych's avatar
chenych committed
19
from typing import Any, Dict
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

import fire
import torch
from safetensors.torch import save_file
from tqdm import tqdm
from transformers.modeling_utils import (
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
    shard_checkpoint,
)


CONFIG_NAME = "config.json"


def save_weight(input_dir: str, output_dir: str, shard_size: str, save_safetensors: bool):
    baichuan2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
    for filepath in tqdm(os.listdir(input_dir), desc="Load weights"):
        if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"):
            shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu")
            baichuan2_state_dict.update(shard_weight)

    llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
    for key, value in tqdm(baichuan2_state_dict.items(), desc="Convert format"):
        if "W_pack" in key:
            proj_size = value.size(0) // 3
            llama2_state_dict[key.replace("W_pack", "q_proj")] = value[:proj_size, :]
            llama2_state_dict[key.replace("W_pack", "k_proj")] = value[proj_size : 2 * proj_size, :]
            llama2_state_dict[key.replace("W_pack", "v_proj")] = value[2 * proj_size :, :]
        elif "lm_head" in key:
            llama2_state_dict[key] = torch.nn.functional.normalize(value)
        else:
            llama2_state_dict[key] = value

    weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME
    shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=weights_name)

    for shard_file, shard in tqdm(shards.items(), desc="Save weights"):
        if save_safetensors:
            save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"})
        else:
            torch.save(shard, os.path.join(output_dir, shard_file))

    if index is None:
        print("Model weights saved in {}".format(os.path.join(output_dir, WEIGHTS_NAME)))
    else:
        index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME
        with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f:
            json.dump(index, f, indent=2, sort_keys=True)
        print("Model weights saved in {}".format(output_dir))


def save_config(input_dir: str, output_dir: str):
    with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f:
        llama2_config_dict: Dict[str, Any] = json.load(f)

    llama2_config_dict["architectures"] = ["LlamaForCausalLM"]
    llama2_config_dict.pop("auto_map", None)
    llama2_config_dict.pop("tokenizer_class", None)
    llama2_config_dict["model_type"] = "llama"

    with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f:
        json.dump(llama2_config_dict, f, indent=2)
    print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME)))


def llamafy_baichuan2(
chenych's avatar
chenych committed
89
90
91
92
    input_dir: str,
    output_dir: str,
    shard_size: str = "2GB",
    save_safetensors: bool = True,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
93
):
chenych's avatar
chenych committed
94
95
96
97
98
    r"""
    Converts the Baichuan2-7B model in the same format as LLaMA2-7B.
    Usage: python llamafy_baichuan2.py --input_dir input --output_dir output
    Converted model: https://huggingface.co/hiyouga/Baichuan2-7B-Base-LLaMAfied
    """
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
99
100
101
102
103
104
105
106
107
108
109
    try:
        os.makedirs(output_dir, exist_ok=False)
    except Exception as e:
        raise print("Output dir already exists", e)

    save_weight(input_dir, output_dir, shard_size, save_safetensors)
    save_config(input_dir, output_dir)


if __name__ == "__main__":
    fire.Fire(llamafy_baichuan2)