trainer.py 12.9 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# This code is inspired by the HuggingFace's TRL library.
# https://github.com/huggingface/trl/blob/v0.8.0/trl/trainer/kto_trainer.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
from collections import defaultdict
from contextlib import nullcontext
from types import MethodType
chenych's avatar
chenych committed
22
from typing import TYPE_CHECKING, Literal, Optional, Union
chenych's avatar
chenych committed
23
24
25
26
27

import torch
from transformers import Trainer
from trl import KTOTrainer
from trl.trainer import disable_dropout_in_model
luopl's avatar
luopl committed
28
from typing_extensions import override
chenych's avatar
chenych committed
29
30

from ...extras.constants import IGNORE_INDEX
chenych's avatar
chenych committed
31
from ...extras.packages import is_transformers_version_greater_than
chenych's avatar
chenych committed
32
from ..callbacks import SaveProcessorCallback
luopl's avatar
luopl committed
33
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps, nested_detach
chenych's avatar
chenych committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


if TYPE_CHECKING:
    from transformers import PreTrainedModel, ProcessorMixin

    from ...hparams import FinetuningArguments


class CustomKTOTrainer(KTOTrainer):
    def __init__(
        self,
        model: Union["PreTrainedModel", torch.nn.Module],
        ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]],
        finetuning_args: "FinetuningArguments",
        processor: Optional["ProcessorMixin"],
        disable_dropout: bool = True,
        **kwargs,
    ):
luopl's avatar
luopl committed
52
53
54
        if is_transformers_version_greater_than("4.46"):
            kwargs["processing_class"] = kwargs.pop("tokenizer")

chenych's avatar
chenych committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        if disable_dropout:
            disable_dropout_in_model(model)
            if ref_model is not None:
                disable_dropout_in_model(ref_model)

        self.finetuning_args = finetuning_args
        self.reference_free = False
        self.use_dpo_data_collator = True  # hack to avoid warning
        self.generate_during_eval = False  # disable at evaluation
        self.label_pad_token_id = IGNORE_INDEX
        self.padding_value = 0
        self.is_encoder_decoder = model.config.is_encoder_decoder
        self.precompute_ref_log_probs = False
        self._precomputed_train_ref_log_probs = False
        self._precomputed_eval_ref_log_probs = False
        self._peft_has_been_casted_to_bf16 = False

        self.ref_model = ref_model
        self._stored_metrics = defaultdict(lambda: defaultdict(list))

        # kto hyperparams
        self.beta = finetuning_args.pref_beta
        self.desirable_weight = finetuning_args.kto_chosen_weight
        self.undesirable_weight = finetuning_args.kto_rejected_weight
        self.ftx_gamma = finetuning_args.pref_ftx

        Trainer.__init__(self, model=model, **kwargs)
luopl's avatar
luopl committed
82
        self.model_accepts_loss_kwargs = False  # overwrite trainer's default behavior
chenych's avatar
chenych committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        if not hasattr(self, "accelerator"):
            raise AttributeError("Please update `transformers`.")

        warnings.simplefilter("ignore")  # remove gc warnings on ref model

        if ref_model is not None:
            if self.is_deepspeed_enabled:
                if not (
                    getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False)
                ):  # quantized models are already set on the correct device
                    self.ref_model = self._prepare_deepspeed(self.ref_model)
            else:
                self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
                self.ref_model.eval()

        if processor is not None:
            self.add_callback(SaveProcessorCallback(processor))

        if finetuning_args.use_badam:
luopl's avatar
luopl committed
102
            from badam import BAdamCallback, clip_grad_norm_old_version  # type: ignore
chenych's avatar
chenych committed
103
104
105
106

            self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
            self.add_callback(BAdamCallback)

luopl's avatar
luopl committed
107
    @override
chenych's avatar
chenych committed
108
109
110
111
112
    def create_optimizer(self) -> "torch.optim.Optimizer":
        if self.optimizer is None:
            self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
        return super().create_optimizer()

luopl's avatar
luopl committed
113
    @override
chenych's avatar
chenych committed
114
115
116
117
118
119
    def create_scheduler(
        self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
    ) -> "torch.optim.lr_scheduler.LRScheduler":
        create_custom_scheduler(self.args, num_training_steps, optimizer)
        return super().create_scheduler(num_training_steps, optimizer)

luopl's avatar
luopl committed
120
    @override
mashun1's avatar
mashun1 committed
121
    def _get_train_sampler(self, *args, **kwargs) -> Optional["torch.utils.data.Sampler"]:
chenych's avatar
chenych committed
122
        r"""Replace the sequential sampler of KTO Trainer created by trl with the random sampler."""
luopl's avatar
luopl committed
123
124
125
        if self.finetuning_args.disable_shuffling:
            return torch.utils.data.SequentialSampler(self.train_dataset)

mashun1's avatar
mashun1 committed
126
        return Trainer._get_train_sampler(self, *args, **kwargs)
chenych's avatar
chenych committed
127

luopl's avatar
luopl committed
128
    @override
chenych's avatar
chenych committed
129
130
131
    def get_batch_samples(self, *args, **kwargs):
        r"""Replace the method of KTO Trainer with the one of the standard Trainer."""
        return Trainer.get_batch_samples(self, *args, **kwargs)
luopl's avatar
luopl committed
132

luopl's avatar
luopl committed
133
    @override
chenych's avatar
chenych committed
134
    def forward(
chenych's avatar
chenych committed
135
136
137
        self, model: "PreTrainedModel", batch: dict[str, "torch.Tensor"], prefix: Literal["", "kl_"] = ""
    ) -> tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]:
        r"""Run forward pass and computes the log probabilities."""
luopl's avatar
luopl committed
138
        batch = nested_detach(batch, clone=True)  # avoid error
chenych's avatar
chenych committed
139
        model_inputs = {
luopl's avatar
luopl committed
140
141
            "input_ids": batch[f"{prefix}input_ids"],
            "attention_mask": batch[f"{prefix}attention_mask"],
chenych's avatar
chenych committed
142
        }
luopl's avatar
luopl committed
143
144
        if f"{prefix}token_type_ids" in batch:
            model_inputs["token_type_ids"] = batch[f"{prefix}token_type_ids"]
luopl's avatar
luopl committed
145

chenych's avatar
chenych committed
146
147
148
        if "pixel_values" in batch:
            model_inputs["pixel_values"] = batch["pixel_values"]

chenych's avatar
chenych committed
149
150
151
        if "image_sizes" in batch:
            model_inputs["image_sizes"] = batch["image_sizes"]

luopl's avatar
luopl committed
152
153
        if "image_grid_thw" in batch:
            model_inputs["image_grid_thw"] = batch["image_grid_thw"]
chenych's avatar
chenych committed
154

chenych's avatar
chenych committed
155
156
157
158
159
160
161
162
163
        if "aspect_ratio_ids" in batch:
            model_inputs["aspect_ratio_ids"] = batch["aspect_ratio_ids"]

        if "aspect_ratio_mask" in batch:
            model_inputs["aspect_ratio_mask"] = batch["aspect_ratio_mask"]

        if f"{prefix}cross_attention_mask" in batch:
            model_inputs["cross_attention_mask"] = batch[f"{prefix}cross_attention_mask"]

chenych's avatar
chenych committed
164
        logits = model(**model_inputs, return_dict=True, use_cache=False).logits.to(torch.float32)
luopl's avatar
luopl committed
165
166
        logps, valid_length = get_batch_logps(logits=logits, labels=batch[f"{prefix}labels"])
        return logits, logps, logps / valid_length
chenych's avatar
chenych committed
167

luopl's avatar
luopl committed
168
    @override
chenych's avatar
chenych committed
169
    def concatenated_forward(
chenych's avatar
chenych committed
170
171
        self, model: "PreTrainedModel", batch: dict[str, "torch.Tensor"]
    ) -> tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
luopl's avatar
luopl committed
172
        target_logits, target_logps, target_logps_avg = self.forward(model, batch)
chenych's avatar
chenych committed
173
        with torch.no_grad():
luopl's avatar
luopl committed
174
            _, kl_logps, _ = self.forward(model, batch, prefix="kl_")
chenych's avatar
chenych committed
175
176
177
178

        if len(target_logps) != len(batch["kto_tags"]):
            raise ValueError("Mismatched shape of inputs and labels.")

luopl's avatar
luopl committed
179
        chosen_logits = target_logits[batch["kto_tags"]]
chenych's avatar
chenych committed
180
        chosen_logps = target_logps[batch["kto_tags"]]
luopl's avatar
luopl committed
181
        rejected_logits = target_logits[~batch["kto_tags"]]
chenych's avatar
chenych committed
182
183
        rejected_logps = target_logps[~batch["kto_tags"]]
        chosen_logps_avg = target_logps_avg[batch["kto_tags"]]
luopl's avatar
luopl committed
184
        return chosen_logps, rejected_logps, chosen_logits, rejected_logits, kl_logps, chosen_logps_avg
chenych's avatar
chenych committed
185

luopl's avatar
luopl committed
186
    @override
chenych's avatar
chenych committed
187
    def compute_reference_log_probs(
chenych's avatar
chenych committed
188
189
190
        self, model: "PreTrainedModel", batch: dict[str, "torch.Tensor"]
    ) -> tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]:
        r"""Compute log probabilities of the reference model."""
chenych's avatar
chenych committed
191
192
193
194
195
196
197
198
        if self.ref_model is None:
            ref_model = model
            ref_context = self.accelerator.unwrap_model(model).disable_adapter()
        else:
            ref_model = self.ref_model
            ref_context = nullcontext()

        with torch.no_grad(), ref_context:
luopl's avatar
luopl committed
199
            reference_chosen_logps, reference_rejected_logps, _, _, reference_kl_logps, _ = self.concatenated_forward(
chenych's avatar
chenych committed
200
201
202
203
204
                ref_model, batch
            )

        return reference_chosen_logps, reference_rejected_logps, reference_kl_logps

luopl's avatar
luopl committed
205
    @override
chenych's avatar
chenych committed
206
207
208
    def get_batch_loss_metrics(
        self,
        model: "PreTrainedModel",
chenych's avatar
chenych committed
209
210
211
        batch: dict[str, "torch.Tensor"],
    ) -> tuple["torch.Tensor", dict[str, "torch.Tensor"]]:
        r"""Compute the DPO loss and other metrics for the given batch of inputs for train or test."""
chenych's avatar
chenych committed
212
        metrics = {}
luopl's avatar
luopl committed
213
214
215
216
217
218
219
220
        (
            policy_chosen_logps,
            policy_rejected_logps,
            policy_chosen_logits,
            policy_rejected_logits,
            policy_kl_logps,
            policy_chosen_logps_avg,
        ) = self.concatenated_forward(model, batch)
chenych's avatar
chenych committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        reference_chosen_logps, reference_rejected_logps, reference_kl_logps = self.compute_reference_log_probs(
            model, batch
        )
        losses, chosen_rewards, rejected_rewards, kl = self.kto_loss(
            policy_chosen_logps,
            policy_rejected_logps,
            policy_kl_logps,
            reference_chosen_logps,
            reference_rejected_logps,
            reference_kl_logps,
        )
        losses = losses.nanmean()

        if self.ftx_gamma > 1e-6 and len(policy_chosen_logps) > 0:  # remember to rescale
            sft_loss = -policy_chosen_logps_avg
            losses += self.ftx_gamma * sft_loss.nanmean() / len(policy_chosen_logps) * len(batch["labels"])

luopl's avatar
luopl committed
238
239
240
241
242
243
244
        num_chosen = len(chosen_rewards)
        num_rejected = len(rejected_rewards)
        if num_chosen > 0:
            metrics["rewards/chosen_sum"] = chosen_rewards.nansum().item()
            metrics["logps/chosen_sum"] = policy_chosen_logps.nansum().item()
            metrics["logits/chosen_sum"] = policy_chosen_logits.nansum().item()
            metrics["count/chosen"] = float(num_chosen)
chenych's avatar
chenych committed
245

luopl's avatar
luopl committed
246
247
248
249
250
        if num_rejected > 0:
            metrics["rewards/rejected_sum"] = rejected_rewards.nansum().item()
            metrics["logps/rejected_sum"] = policy_rejected_logps.nansum().item()
            metrics["logits/rejected_sum"] = policy_rejected_logits.nansum().item()
            metrics["count/rejected"] = float(num_rejected)
chenych's avatar
chenych committed
251

luopl's avatar
luopl committed
252
253
        metrics["kl"] = kl.item()
        return losses, metrics
chenych's avatar
chenych committed
254

luopl's avatar
luopl committed
255
    @override
luopl's avatar
luopl committed
256
    def compute_loss(
chenych's avatar
chenych committed
257
258
259
        self, model: "PreTrainedModel", inputs: dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs
    ) -> Union["torch.Tensor", tuple["torch.Tensor", list["torch.Tensor"]]]:
        r"""Subclass and override to accept extra kwargs."""
chenych's avatar
chenych committed
260
        return super().compute_loss(model, inputs, return_outputs)
chenych's avatar
chenych committed
261

luopl's avatar
luopl committed
262
    @override
chenych's avatar
chenych committed
263
264
    def log(self, logs: dict[str, float], *args, **kwargs) -> None:
        r"""Log `logs` on the various objects watching training, including stored metrics."""
luopl's avatar
luopl committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        # logs either has "loss" or "eval_loss"
        train_eval = "train" if "loss" in logs else "eval"
        prefix = "eval_" if train_eval == "eval" else ""
        # Add averaged stored metrics to logs
        key_list, metric_list = [], []
        for key, metrics in self._stored_metrics[train_eval].items():
            key_list.append(key)
            metric_list.append(torch.tensor(metrics, dtype=torch.float).to(self.accelerator.device).sum().item())

        del self._stored_metrics[train_eval]
        if len(metric_list) < 9:  # pad to for all reduce
            for i in range(9 - len(metric_list)):
                key_list.append(f"dummy_{i}")
                metric_list.append(0.0)

        metric_list = torch.tensor(metric_list, dtype=torch.float).to(self.accelerator.device)
        metric_list = self.accelerator.reduce(metric_list, "sum").tolist()
chenych's avatar
chenych committed
282
        metric_dict: dict[str, float] = dict(zip(key_list, metric_list))
luopl's avatar
luopl committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        for split in ["chosen", "rejected"]:  # accumulate average metrics from sums and lengths
            if f"count/{split}" in metric_dict:
                for key in ("rewards", "logps", "logits"):
                    logs[f"{prefix}{key}/{split}"] = metric_dict[f"{key}/{split}_sum"] / metric_dict[f"count/{split}"]
                    del metric_dict[f"{key}/{split}_sum"]
                del metric_dict[f"count/{split}"]

        if f"{prefix}rewards/chosen" in logs and f"{prefix}rewards/rejected" in logs:  # calculate reward margin
            logs[f"{prefix}rewards/margins"] = logs[f"{prefix}rewards/chosen"] - logs[f"{prefix}rewards/rejected"]

        for key, metric in metric_dict.items():  # add remaining items
            if not key.startswith("dummy_"):
                logs[key] = metric

chenych's avatar
chenych committed
297
        return Trainer.log(self, logs, *args, **kwargs)