trainer.py 9.52 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's TRL library.
# https://github.com/huggingface/trl/blob/v0.8.0/trl/trainer/kto_trainer.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
from collections import defaultdict
from contextlib import nullcontext
from types import MethodType
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union

import torch
from transformers import Trainer
from trl import KTOTrainer
from trl.trainer import disable_dropout_in_model
luopl's avatar
luopl committed
28
from typing_extensions import override
chenych's avatar
chenych committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

from ...extras.constants import IGNORE_INDEX
from ..callbacks import SaveProcessorCallback
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps


if TYPE_CHECKING:
    import torch.utils.data
    from transformers import PreTrainedModel, ProcessorMixin

    from ...hparams import FinetuningArguments


class CustomKTOTrainer(KTOTrainer):
    def __init__(
        self,
        model: Union["PreTrainedModel", torch.nn.Module],
        ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]],
        finetuning_args: "FinetuningArguments",
        processor: Optional["ProcessorMixin"],
        disable_dropout: bool = True,
        **kwargs,
    ):
        if disable_dropout:
            disable_dropout_in_model(model)
            if ref_model is not None:
                disable_dropout_in_model(ref_model)

        self.finetuning_args = finetuning_args
        self.reference_free = False
        self.use_dpo_data_collator = True  # hack to avoid warning
        self.generate_during_eval = False  # disable at evaluation
        self.label_pad_token_id = IGNORE_INDEX
        self.padding_value = 0
        self.is_encoder_decoder = model.config.is_encoder_decoder
        self.precompute_ref_log_probs = False
        self._precomputed_train_ref_log_probs = False
        self._precomputed_eval_ref_log_probs = False
        self._peft_has_been_casted_to_bf16 = False

        self.ref_model = ref_model
        self._stored_metrics = defaultdict(lambda: defaultdict(list))

        # kto hyperparams
        self.beta = finetuning_args.pref_beta
        self.desirable_weight = finetuning_args.kto_chosen_weight
        self.undesirable_weight = finetuning_args.kto_rejected_weight
        self.ftx_gamma = finetuning_args.pref_ftx

        Trainer.__init__(self, model=model, **kwargs)
        if not hasattr(self, "accelerator"):
            raise AttributeError("Please update `transformers`.")

        warnings.simplefilter("ignore")  # remove gc warnings on ref model

        if ref_model is not None:
            if self.is_deepspeed_enabled:
                if not (
                    getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False)
                ):  # quantized models are already set on the correct device
                    self.ref_model = self._prepare_deepspeed(self.ref_model)
            else:
                self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
                self.ref_model.eval()

        if processor is not None:
            self.add_callback(SaveProcessorCallback(processor))

        if finetuning_args.use_badam:
            from badam import BAdamCallback, clip_grad_norm_old_version

            self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
            self.add_callback(BAdamCallback)

luopl's avatar
luopl committed
103
    @override
chenych's avatar
chenych committed
104
105
106
107
108
    def create_optimizer(self) -> "torch.optim.Optimizer":
        if self.optimizer is None:
            self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
        return super().create_optimizer()

luopl's avatar
luopl committed
109
    @override
chenych's avatar
chenych committed
110
111
112
113
114
115
    def create_scheduler(
        self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
    ) -> "torch.optim.lr_scheduler.LRScheduler":
        create_custom_scheduler(self.args, num_training_steps, optimizer)
        return super().create_scheduler(num_training_steps, optimizer)

luopl's avatar
luopl committed
116
    @override
chenych's avatar
chenych committed
117
118
119
120
121
122
    def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]:
        r"""
        Replaces the sequential sampler of KTO Trainer created by trl with the random sampler.
        """
        return Trainer._get_train_sampler(self)

luopl's avatar
luopl committed
123
    @override
chenych's avatar
chenych committed
124
125
126
127
128
129
130
131
132
133
134
    def forward(
        self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"], prefix: Literal["", "kl_"] = ""
    ) -> Tuple["torch.Tensor", "torch.Tensor"]:
        r"""
        Runs forward pass and computes the log probabilities.
        """
        batch = {k: v.detach().clone() for k, v in batch.items()}  # avoid error
        model_inputs = {
            "input_ids": batch["{}input_ids".format(prefix)],
            "attention_mask": batch["{}attention_mask".format(prefix)],
        }
luopl's avatar
luopl committed
135
136
137
        if "{}token_type_ids".format(prefix) in batch:
            model_inputs["token_type_ids"] = batch["{}token_type_ids".format(prefix)]

chenych's avatar
chenych committed
138
139
140
        if "pixel_values" in batch:
            model_inputs["pixel_values"] = batch["pixel_values"]

luopl's avatar
luopl committed
141
142
        if "image_grid_thw" in batch:
            model_inputs["image_grid_thw"] = batch["image_grid_thw"]
chenych's avatar
chenych committed
143
144
145
146
147

        logits = model(**model_inputs, return_dict=True, use_cache=False).logits.to(torch.float32)
        logps, valid_length = get_batch_logps(logits=logits, labels=batch["{}labels".format(prefix)])
        return logps, logps / valid_length

luopl's avatar
luopl committed
148
    @override
chenych's avatar
chenych committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    def concatenated_forward(
        self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
    ) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
        target_logps, target_logps_avg = self.forward(model, batch)
        with torch.no_grad():
            kl_logps, _ = self.forward(model, batch, prefix="kl_")

        if len(target_logps) != len(batch["kto_tags"]):
            raise ValueError("Mismatched shape of inputs and labels.")

        chosen_logps = target_logps[batch["kto_tags"]]
        rejected_logps = target_logps[~batch["kto_tags"]]
        chosen_logps_avg = target_logps_avg[batch["kto_tags"]]
        return chosen_logps, rejected_logps, kl_logps, chosen_logps_avg

luopl's avatar
luopl committed
164
    @override
chenych's avatar
chenych committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    def compute_reference_log_probs(
        self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
    ) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]:
        r"""
        Computes log probabilities of the reference model.
        """
        if self.ref_model is None:
            ref_model = model
            ref_context = self.accelerator.unwrap_model(model).disable_adapter()
        else:
            ref_model = self.ref_model
            ref_context = nullcontext()

        with torch.no_grad(), ref_context:
            reference_chosen_logps, reference_rejected_logps, reference_kl_logps, _ = self.concatenated_forward(
                ref_model, batch
            )

        return reference_chosen_logps, reference_rejected_logps, reference_kl_logps

luopl's avatar
luopl committed
185
    @override
chenych's avatar
chenych committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    def get_batch_loss_metrics(
        self,
        model: "PreTrainedModel",
        batch: Dict[str, "torch.Tensor"],
    ) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]:
        r"""
        Computes the DPO loss and other metrics for the given batch of inputs for train or test.
        """
        metrics = {}
        policy_chosen_logps, policy_rejected_logps, policy_kl_logps, policy_chosen_logps_avg = (
            self.concatenated_forward(model, batch)
        )
        reference_chosen_logps, reference_rejected_logps, reference_kl_logps = self.compute_reference_log_probs(
            model, batch
        )
        losses, chosen_rewards, rejected_rewards, kl = self.kto_loss(
            policy_chosen_logps,
            policy_rejected_logps,
            policy_kl_logps,
            reference_chosen_logps,
            reference_rejected_logps,
            reference_kl_logps,
        )
        losses = losses.nanmean()

        if self.ftx_gamma > 1e-6 and len(policy_chosen_logps) > 0:  # remember to rescale
            sft_loss = -policy_chosen_logps_avg
            losses += self.ftx_gamma * sft_loss.nanmean() / len(policy_chosen_logps) * len(batch["labels"])

        num_chosen = torch.Tensor([len(chosen_rewards)]).to(self.accelerator.device)
        num_rejected = torch.Tensor([len(rejected_rewards)]).to(self.accelerator.device)

        all_num_chosen = self.accelerator.gather(num_chosen).sum().item()
        all_num_rejected = self.accelerator.gather(num_rejected).sum().item()

        if all_num_chosen > 0:
            metrics["rewards/chosen_sum"] = self.accelerator.gather(chosen_rewards.nansum()).nansum().item()
            metrics["logps/chosen_sum"] = self.accelerator.gather(policy_chosen_logps.nansum()).nansum().item()
            metrics["count/chosen"] = all_num_chosen

        if all_num_rejected > 0:
            metrics["rewards/rejected_sum"] = self.accelerator.gather(rejected_rewards.nansum()).nansum().item()
            metrics["logps/rejected_sum"] = self.accelerator.gather(policy_rejected_logps.nansum()).nansum().item()
            metrics["count/rejected"] = all_num_rejected

        metrics["kl"] = kl.item()

        return losses, metrics